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CHAPTER 1

INTRODUCTION

For decades, the main objective of models developed for supply chain optimization, lo-
gistics management and transportation systems analysis has focused on minimizing costs.
These models have been driven by the needs of different industries to improve cost ef-
ficiency and performance. Primary costs in supply chain result from activities such as
purchasing, inventory holding, and transportation. Thus, the coordination of decisions re-
lated to material procurement, inventory management and transportation management have
so far been the major concern in the traditional supply chain management problems.

More recently, the need for long term sustainability has been recognized with the pub-
lic awareness on environmental issues. Scientists raise their concerns about the increased
levels of greenhouse gas concentrations and their impacts on the global climate change. To
regulate the carbon emissions, an increasing number of efforts have been initiated world-
wide, such as Kyoto Protocol [97] and European Climate Change Programme [34]. These
policies require the companies to reduce their carbon footprint by revising their operations
and updating their technologies. Companies in the US are not yet subject to any federal
carbon regulations. However, a number of states have joined forces to launch regional

emission-trading programs, such as the Regional Greenhouse Gas Initiative (RGGI), the
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Western Climate Initiative (WCI), and the Midwest Greenhouse Gas Reduction Accord
(MGGRA). Therefore, we believe that the day when federal carbon regulatory policies are
in place, at least to some degree, is not far off.

Many large companies such as Walmart, Tesco, UPS and Hewlett Packard are readily
committed to going green [45]. They reorganize their shipment schedules and use fuel
efficient vehicles to minimize their carbon emissions. These companies realize that by
implementing the green initiatives, they do not only protect the environment, but also gain
competitive advantage by increasing customer goodwill and loyalty. The expectation is that
other companies will join this trend to strengthen their brand image and strive to reduce
their carbon footprint.

Emissions within the supply chain of a product may result from production, inventory
and transportation activities. According to the International Energy Agency (IEA)[53], a
quarter of the energy-related CO, emissions worldwide currently result from transporta-
tion. IEA also estimates that transportation emissions will double by 2050. Recent studies
show that transportation emissions can be reduced by improvements in the energy effi-
ciency, using alternative energy sources, and modifying supply chain operations [24, 54,
55, 70, 71]. For example, shifting to less energy intensive transportation modes can po-
tentially decrease the emissions. However, the total system costs and lead times are also
affected with transportation mode selection decisions. The challenge lies in identifying the
appropriate modes of transportation while minimizing the total system costs and emissions

and satisfying the demand of the customer on time.

www.manaraa.com



The objective of this research is to develop models for designing and managing cost
efficient and environmentally friendly supply chains. The goal is to provide insights and
direction to guide companies on making sustainable logistics management and transporta-
tion decisions. For that purpose, this study develops mathematical models which represent
the relationships that exist between costs and emissions in a two-stage supply chain. These
mathematical models will minimize total transportation and inventory holding costs in the
supply chain, while accounting for carbon emissions due to transportation and other logis-
tics and supply chain-related activities. Most of the studies in the supply chain literature
with a “green” perspective propose mathematical models that consider objectives such as
remanufacturing and disposal. Minimizing the carbon footprint of the supply chain is rela-
tively new in the literature. Two main streams of research related to carbon emissions can
be put into the categories of measuring [13, 75, 81, 92] and minimizing [1, 9, 10, 44, 41, 79]
the level of carbon emissions in the supply chains. This study falls into the latter stream
of research, which identifies operational policy changes that impact costs and emissions in
the supply chain. It specifically contributes to the literature by improving transportation-
related costs and emissions in the supply chain, and consequently achieving the long-term
sustainability of transportation systems. The models proposed have the potential to help
companies improve transportation and logistics-related costs and emissions, and therefore,
become competitive while mitigating environmental impacts.

The mathematical models developed are extensions of the classical Economic Lot Siz-
ing (ELS) model introduced by Wagner and Whitin [104]. The classical ELS model iden-

tifies an inventory replenishment schedule for a fixed planning horizon with time-varying

3
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demand. This model assumes that one supplier and one transportation mode are avail-
able to replenish inventories. A number of studies have generalized this classical model
to account for emissions. Benjaafar et al. [10] extend the ELS model to handle carbon
cap, carbon tax, carbon cap-and-trade and carbon offset mechanisms. These mechanisms
work as described in the following: Under a carbon cap mechanism, the amount of carbon
emitted due to transportation, production and inventory activities cannot surpass a predeter-
mined cap. Under a carbon tax mechanism, a facility pays a tax per ton of carbon emitted
due to its operations. Under a carbon cap-and-trade mechanism, a carbon cap is imposed
on the facility, where a carbon market also exists which allows the facility to sell unused
carbon credits at a profit, or to purchase carbon credits if needed. Under a carbon offset
mechanism, a carbon cap is imposed on the facility. A carbon market also exists which
allows the facility to purchase carbon credits if needed, but the facility cannot sell back un-
used carbon credits. Helmrich et al. [41], Mooij [73], Ty [95] develop solution algorithms
for the models proposed by Benjaafar et al. [10]. This research extends the ELS models
with multiple modes of replenishment and analyze the impacts of carbon regulatory mech-
anisms on replenishment decisions. Multiple replenishment modes have been considered
by Absi et al. [1] for different variations of the carbon cap policy. Hoen et al. [44] focus
on measuring and analyzing carbon emissions due to transportation. The methodology
developed by Hoen et al. [44] is used in the numerical analysis.

Chapter 3 explains models with multiple replenishment modes with carbon emission
considerations and provides insights on the impact of carbon regulatory mechanisms on

supply chain performance. This chapter also analyzes the complexity of the models as

4
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models with carbon emission considerations are new in the literature. Models considering
carbon cap and carbon offset mechanisms are shown to be NP-hard. The models with car-
bon tax and carbon cap-and-trade mechanisms are easier problems and they can be solved
by an O(IT?) algorithm. A two-tier supply chain consisting of a number of suppliers and
one facility is considered. The facility faces a time varying and deterministic demand. In
order to satisfy customer demand, a facility may replenish its inventories using one or more
suppliers. The facility may correspond to a manufacturer or a retailer who makes inventory
replacement decisions every period within a fixed planning horizon of length T. A supplier
in this model is defined by the combination of a physical supplier and the corresponding
transportation mode used. A facility may replenish its inventories using local suppliers
or using suppliers located further way. A fixed charge transportation cost structure is as-
sumed. A fixed cost is charged for initiating a shipment, and a variable cost is charged per
unit delivered. For example, the fixed charge for rail transportation is higher than truck,
but the variable cost is smaller. In addition to costs, the models consider emissions due
to transportation and inventory holding in this two-tier supply chain. The structure of the
emission functions also contains a fixed plus linear structure. A fixed amount of carbon
is emitted every time we initiate a shipment due to loading and unloading activities. Vari-
able emissions depend on the quantity shipped and distance traveled. Thus, the fixed and
variable emissions depend on the transportation mode used. For example, more effort is
typically required to load and unload a rail car and barge than a truck. Thus, fixed emis-
sions are higher for rail and barge than truck. Gas usage per ton and per mile for trucks

is higher than rail and barge; consequently, unit variable emissions for trucks are higher.
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However, depending on the transportation distance, total emissions for long hauls using
rail and barge may be higher. In the numerical analysis the study specifically considers
a biofuel supply chain. As logistics costs of biomass are high, transportation mode and
supplier selection decisions are especially important in this contemporary supply chain
problem. Observations from the experiments show that a significant decrease in emissions
can be achieved through supply chain operations with a low cost. Counter intuitively, local
suppliers with truck transportation are preferred as the carbon cap levels decrease.

With the motivation of obtaining valuable insights about the impact of carbon regu-
latory mechanisms on supply chain performance, the study in Chapter 3 is extended to
consider more realistic and complex scenarios in Chapter 4 and 5. For these chapters, a
multiple setups cost structure is assumed which includes a fixed order cost, a unit variable
cost charged for each unit shipped, and a fixed cargo container cost which is charged for
each container used. There also exists a unit variable emission and fixed emissions result-
ing from loading and unloading of each cargo container. This cost structure allows a more
accurately representation of costs and emissions associated with a given mode as a function
of quantity shipped. These chapters consider age-dependent perishable inventories. These
inventories deteriorate with respect to their age and lose a percentage of their value at every
time period. They are eventually discarded due to spoilage. Examples include agricultural
and dairy products. These products are of particular interest because of emissions result-
ing from the required refrigeration to transport and hold the products. The tradeoffs do not
only exist between costs and emissions, replenishment and inventory holding costs, but

also lead time and the remaining shelf life of the perishable products.
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Chapter 4 is dedicated to analyzing models with age-dependent perishable inventories
and multiple setups replenishment costs with the single objective of cost minimization. The
properties of an optimal solution are defined. The chapter considers special cases where
only a single mode or two modes of replenishment are available. Algorithms are proposed
to solve both general and special cases that provide good quality solutions in short running
times. In Chapter 5, the research extends the model proposed in Chapter 4 to minimize
the environmental impacts using a multi-objective approach. Some studies in the litera-
ture incorporate carbon emissions into multi-objective models [15, 62, 107]. This study
constructs a bi-objective model with the minimization of total costs and total emissions
objectives. It provides insights about supplier selection and the tradeoffs between costs
and emissions in the supply chain using weighted sum and e-constraint methods. The anal-
yses show how the results of these two solution approaches would explain the performance
of the supply chain under carbon tax and carbon cap policies respectively.

Overall, this research analyzes extensions of the economic lot sizing models to deal
with contemporary issues in the supply chains. Supply chains with biomass and perishable
products are of interest which require an emphasis on the product characteristics. Addition-
ally this research provides insights on the replenishment decisions such as transportation
mode selection and transportation schedules which would minimize the costs as well as

the environmental impacts.
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CHAPTER 2

LITERATURE REVIEW

The supply chain management (SCM) literature mostly focuses on improving the prof-
itability and efficiency of the chain [17], where cost is an all-important measure of effi-
ciency. Major contributors to total system costs include purchasing, inventory holding, and
transportation costs. As noted by Simchi-Levi et al. [87], the coordination of decisions re-
lated to material procurement, inventory management, and transportation management can
greatly impact overall system costs and service levels. More recently, because of increased
public awareness of environmental issues, SCM research has considered the “green” per-
spective. As a consequence, SCM literature is expanding in a new direction which aims
to limit the environmental impact of supply chain activities. Thus far, the literature on
“green” supply chain management (GSCM) has concentrated on topics involving product
recycling, reuse, and disposal. We refer interested readers to Srivastava [90] and Dekker
et al. [23] for a thorough literature review on GSCM.

A new stream of literature within GSCM analyzes the carbon footprint of a product’s
supply chain. A number of studies propose methods to measure and quantify carbon emis-
sions in the supply chain due to processes such as transportation [13, 75, 81, 92]. Other

studies propose optimization models to minimize the carbon footprint of a supply chain
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through changes in supply chain design and operations [10]. The work presented in this
paper falls in this latter stream of research, which identifies operational policy changes
(e.g., in inventory replenishment schedules, transportation modes and supplier selection)
that impact costs and emissions in the supply chain.

Production of fuels using renewable sources of energy (such as biomass) is experienc-
ing growth in the US. The existing literature on biofuel supply chains has concentrated
on identifying supply chain designs and management practices which optimize the system
performance. A number of research articles utilize cost minimization models to determine
optimal locations and capacities for biorefineries given the distribution of biomass and the
location of final customers [4, 26, 27, 30, 40, 49, 94, 112]. Other studies use models which
identify supply chain management practices that maximize profits [61, 67, 69, 80] and/or
minimize risk associated with investments [20]. Stochastic programming and simulation
models have been used to capture the uncertainties in biomass supply and costs in the sup-
ply chain [22, 52, 65, 88, 83, 93]. This literature features a number of studies emphasizing
the importance of minimizing transportation costs in biofuel supply chains [31, 74, 110].
Please see An et al. [5] and Iakovou et al. [51] for a thorough review of the literature on
biofuel and biomass supply chain design and management tools.

Traditional inventory management models in the SCM literature, such as the EOQ
model and the dynamic economic lot sizing model, identify inventory replenishment sched-
ules for a single facility facing deterministic demand for a single item. These models take
into account the tradeoffs that exist between fixed ordering costs and inventory holding

costs in a supply chain. A number of studies in the area of GSCM have extended these

9
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basic inventory models to account for carbon emissions due to production and inventory in
the supply chain. For example, the EOQ model has been extended by Chen et al. [16], Hua
et al. [48], Arslan and Turkay [6] and Wahab et al. [105] to address carbon cap, carbon
tax, carbon cap and trade, and carbon offset mechanisms. Benjaafar et al. [10] extend the
ELS model to handle these carbon regulatory mechanisms. Helmrich et al. [41], Mooij
[73] and Ty [95] develop solution algorithms for the models proposed by Benjaafar et al.
[10]. These extensions of the ELS model are inspired by current logistics practices that
also serve as a motivation for our work. We contribute to these efforts by extending the
ELS models to consider the impact of carbon regulatory mechanisms on replenishment
decisions when a company has the option of using multiple suppliers and modes to replen-
ish inventories. The models we develop can be used as sub-modules in MRP systems to
help environmentally conscious companies with requirements planning when multi-mode
and multi-supplier replenishment options are available. These tools enable companies to
determine whether they should employ a single supplier and a single replenishment mode,
or a combination of different suppliers and modes. We refer readers to Bonney and Jaber
[12] for a wide range of extensions to traditional inventory models.

A number of prior studies have focused on analyzing emissions from transportation ac-
tivities in the supply chain. For example, Bauer et al. [9] propose an integer programming
model to identify a transportation network design that minimizes total emissions due to
transportation. Winebrake et al. [109] present an energy and environmental network anal-
ysis model that explores the tradeoffs between costs, time and emissions resulting from

freight transportation. Pan et al. [79] discuss how shipment consolidation in supply chains
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impacts emissions from freight transportation. Absi et al. [1] extend the formulation of
an inventory replenishment model under a carbon cap mechanism proposed by Benjaa-
far et al. [10] to capture the impact that the multiple mode availability in transportation
has on emissions. They model different variations of a carbon cap mechanism (such as
a time-cumulative cap, a period-by-period cap, a rolling cap, and a global cap) and ana-
lyze the complexity of these models. The work by Hoen et al. [44] focuses on measuring
and analyzing carbon emissions due to transportation. Rosi¢ [86] integrates environmental
regulations (such as emissions limits, emissions taxes and emissions trading) into a basic
dual-sourcing model within a supply chain. This work demonstrates the way in which
transportation related decisions may be influenced by carbon regulations.

Several additional studies have addressed supply chain network design decisions with
carbon emission considerations. These studies take different approaches to incorporate car-
bon emissions into multi-objective optimization models [15, 62, 107] and game theoretic
models [25] for supply chain network design.

Within the aforementioned literature, our research is most closely related to the work
by Hoen et al. [44]. Hoen et al. [44] develop a methodology that can be used to quantify
transportation carbon emissions. They use this methodology to compare emissions levels
when shipping via different modes of transportation. Their results show that product char-
acteristics, such as volume and density, impact transportation mode selection, and modal
shifts can result in large emission reductions. The methodology developed by Hoen et al.

[44] generates data for our study’s numerical experiments, and, as a consequence, derives
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meaningful and realistic representations of the relationship between different transporta-
tion modes and consequent emissions levels.

Our research is closely related to a study by Benjaafar et al. [10] and Helmrich et al.
[41] that assume that a single supplier is used to replenish inventories. Our work adds an
important dimension to this problem, by accounting for supplier and transportation mode
selection decisions. As a consequence, our models capture not only the tradeoffs that exist
between costs and emissions due to inventory and transportation, but they also capture
the tradeoffs between cost and emissions resulting from the use of different suppliers and
transportation modes.

Our research is also related to the multi-objective modeling for cost and emissions
minimization. There is an extensive existing literature in the field of multi-objective pro-
gramming (MOP) [91]. The purpose of MOP models is to optimize systematically and
simultaneously a collection of conflicting objectives. Solving an MOP problem means
identifying the set of Pareto optimal solutions which are solutions that are nondominated
in the sense that no subset of objectives can be improved without making at least one ob-
jective worse. MOP models have been used to optimize green supply chains. For example,
Wang et al. [106] uses a bi-optimization model to design a supply chain network which
optimizes costs and emissions. This paper extends the classical facility location model
to consider transportation-related costs and emissions when making facility location deci-
sions. Neto et al. [77] propose an algorithm to solve an MOP model with three objectives:

minimize costs, cumulative energy demand and waste in a reverse logistics network. This
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paper is consistent with this work since it uses an MOP to optimize costs and emissions in
a supply chain.

Our research considers the replenishment of special characteristic products, such as
perishable products. Different from the literature, our models identify tradeoffs that ex-
ist between lead time, remaining shelf life and product perishability in the supply chain.
Nahmias [76], and Goyal and Giri [38] present extensive reviews of inventory replenish-
ment models for perishable products. Nahmias distinguishes between perishable products
with fixed versus random lifetime. Our article considers perishable products that deterio-
rate with time and therefore have a random lifetime. The literature discusses deterministic
inventory replenishment models for perishable products with random lifetime. These are
extensions of the Economic Order Quantity (EOQ) model [37, 19], and Economic Lot Siz-
ing model [47]. For inventory replenishment models for perishable products with fixed
lifetime see Eksioglu and Jin [29], Ahuja et al. [3], Zhang and Eksioglu [113], and Onal
[78].

Our research provides extensions of models studied by Hwang [50], Jaruphongsa et al.
[59], Lee [64], and Hsu [46]. Hwang [50], Lee [64] and Jaruphongsa et al. [59] consider
multiple setups replenishment costs in their studies. Hwang [50] provides an extensive
study that presents algorithms for a set of different cost structures. Jaruphongsa et al.
[59] propose a dynamic programming algorithm for the special case of dual transportation
modes. Hsu [46] provides an efficient algorithm for age-dependent products under a fixed

setup cost structure using a single replenishment mode.
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CHAPTER 3
ANALYZING IMPACT OF CARBON REGULATORY MECHANISMS ON SUPPLIER

AND MODE SELECTION DECISIONS

3.1 Introduction

Global climate change is an important contemporary issue that is being investigated
from numerous perspectives. Many prominent world leaders and scientists have raised
concerns in recent years regarding increased levels of greenhouse gas (GHG) emissions
and the impacts these emissions have on climate change.The Intergovernmental Panel on
Climate Change (IPCC) estimates an increase of 1.8° to 4° Celsius in Earth’s temperature
by the end of this century because of increased GHGs, such as carbon dioxide (COs),
methane and nitrous oxide [89]. Of major concern is the burning of fossil fuels, since their
extensive usage in areas ranging from power generation to transportation yields significant
GHG emissions levels.

These concerns have inspired a worldwide debate about GHG emission reduction tar-
gets and regulations. A study by McKinsey & Company [71] indicates that a delay of
action in the next 10 years will have a great impact on the environment. Rogner et al. [85]
argue that in order to prevent global warming and climate change, GHG emissions should
be reduced by 50% of their 1990 levels by 2050. Many countries and governments have

accepted the premise that an urgent need exists to put policies into action, and as a result
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have already set reduction targets. For example, through its European Climate Change Pro-
gramme, the European Union aims to reduce its GHG emissions by at least 20% by 2020
compared to 1990 levels [34]. While the media has chronicled a fair amount of controversy
regarding GHGs and climate change, our study does not to weigh in on this debate; instead
our research assumes that reducing fossil fuel consumption will provide economic benefits
and improve quality of life.

Transportation and other supply chain related activities are a major contributor to GHG
emissions [57]. According to the International Transport Forum, global CO, emissions
from fossil fuel combustion will increase by 45% from 2006 to 2030 [56]. The Interna-
tional Energy Agency (IEA) [53] states that 19% of the energy consumption, and almost a
quarter of the energy-related CO, emissions worldwide result from transportation. In the
US, transportation comprises 28% of the total energy consumption [21]. The US Envi-
ronmental Protection Agency (EPA) estimates that during the period from 1990 to 2010,
transportation-related emissions rose by 18% [33]. This is mainly due to the increased
demand for travel, and the US vehicle fleet’s stagnant fuel efficiency. Considering cur-
rent worldwide trends in transportation mode usage, the IEA estimates that transportation
will experience the largest growth in energy demand in the next 40 years. Transporta-
tion demand is expected to increase by 50% by 2030 and 80% by 2050. As a conse-
quence, transportation related emissions are projected to nearly double, going from 7.5
Gigatonnes (Gt) in 2006 to about 14 Gt in 2050 [53]. Given these trends, achieving the
target of a 50% reduction in total carbon emissions by 2050 will be almost impossible,

unless transportation-related emissions are reduced significantly.
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Road transportation is the largest contributor to transportation-related emissions. Pri-
vate automobiles and light truck vehicles contribute over 60% of these emissions. Other
modes of transportation contribute to transportation-related emissions in the following or-
der: air transport, marine, rail, and pipelines [39]. Air transportation-related emissions are
expected to increase by 60% in 2025, compared to 2001 levels because of the increased
usage [96]. Increased emissions from rail transportation will depend, to a large extent, on
the development of adequate infrastructure as a result of capital investments.

In order to reduce transportation emissions, several studies advise modal shifts from
energy intensive modes, such as road and air to rail, barge, and ship [24, 54, 55, 70]. How-
ever, in the context of supply chain management, shifting from one transportation mode to
another will impact costs and delivery lead times. Additionally, firms may not have access
to a mode with lower emissions, such as rail or marine transportation, due to infrastructure
and geographic limitations. Therefore, managers must identify the appropriate transporta-
tion mode(s) in a supply chain in order to address the tradeoffs between inventory and
transportation costs, customer satisfaction (via on-time product delivery), and the carbon
footprint of the product delivered.

The opportunities for reducing carbon emissions are multi-fold. A recent study by
McKinsey & Company [70] shows that improvements in energy efficiency, using alterna-
tive fuels (e.g., biofuels), and using alternative energy sources (e.g. wind and nuclear) can
potentially reduce carbon emissions. In addition to developing new technologies, addi-
tional measures to reduce carbon emissions include how shifts in the operational policies

within a product’s supply chain can serve to reduce transportation-related carbon emis-
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sions. This study investigates how decisions regarding which suppliers and transportation
mode(s) are used and the degree of transportation vehicle utilization can greatly reduce en-
ergy usage without significantly impacting costs. We propose several optimization models,
each of which is an extension of the classical economic lot-sizing (ELS) model to allow
for constraints and/or costs on carbon emissions. We demonstrate through our numerical
study that operations policy modifications can address tradeoffs between inventory-related
costs and carbon emissions.

We contribute to the existing literature by providing model-based insights on the im-
pacts that potential carbon regulatory policies, such as carbon cap, tax, cap-and-trade
and offset have on supplier and transportation mode selection decisions. The economic
lot-sizing models with multiple replenishment modes and carbon constraints this study
presents offer some interesting observations with respect to the tradeoffs between costs
and emissions. As models with carbon emission considerations are new in the literature,
we also find it useful to provide insights about the complexity of the proposed models. We
show that the models for carbon cap and carbon offset mechanisms are NP-hard, while
the models for carbon tax and cap-and-trade mechanisms are easier problems and can be
solved by a polynomial time algorithm. The main contribution of this paper, however, lies
in applying the proposed models to a contemporary supply chain problem (biofuel supply
chain) and deriving meaningful numerical results and insights.

In the numerical analysis we consider inventory replenishment decisions at a biorefin-
ery which uses woody biomass for production of cellulosic ethanol. It is estimated that the

US annually supplies 327 million tons (MT) of woody biomass for production of biofu-
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els. This amount constitutes 20% of the total 1.6 billion tons/year of biomass available for
production of biofuels [99]. Based on the Renewable Fuel Standard (RFS), the minimum
level of renewable fuels used in the US transportation industry is expected to increase from
9.0 billion gallons per year (BGY) in 2008 to 36 BGY in 2022 [84]. We expect that, due
to these requirements, the production of cellulosic ethanol will increase.

Inventory replenishment decisions at the biorefinery are very important because of the
high in-bound logistics-related costs that occur as a result of the characteristics of the raw
material (in this case, woody biomass) which: (a) is bulky and difficult to transport, (b) has
low energy density, and (c) is widely dispersed geographically. Assuming a conversion rate
of 60 gallons per dry ton, a medium-sized biorefinery which produces 60 million gallons
per year (MGY) of ethanol would typically receive 1 MT per year of biomass. Assuming
260 working days per year, 128 truck loads of biomass would be shipped daily. Biore-
fineries consider receiving shipments by using different modes of transportation such as
barge or unit rail, high capacity transportation modes that have historically been used for
transportation of wood and other bulky products. Using these modes of transportation has
the potential to reduce transportation costs, decrease road traffic and improve road safety
in the surrounding communities, and increase the pool of suppliers available. Increased
biomass availability enables the establishment of large capacity plants, and consequently
allows for economies of scale in production. We have identified at least two biorefineries
in Mississippi which are located near to an in-land port and also have access to rail: KiOR
Inc.’s facility in Columbus and Bluefire Renewables in Fulton. KiOR’s plant has started

operating in early 2013 [63] and has a capacity of 11 MGY. This plant is located by the
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Tennessee-Tombigbee Waterway port of Columbus and has access to Burlington North-
ern Santa Fe (BNSF) Railway, Norfolk Southern and Canadian National/Illinois Central
railways. Bluefire Renewables’ plan features a capacity of 19 MGY [100], and will have
access to the Mississippi River, port of Itawamba and be served by the Mississippian Rail-
way.

In our numerical experiments, we use a methodology for estimating emissions from
transportation developed by Hoen et al. [43]. This methodology calculates emissions as
a function of distance traveled, load weight, and the transportation mode used. We use
publicly available data to derive transportation cost functions for rail, barge, and truck. As
a consequence, our numerical results are meaningful and give a realistic representation of
emissions levels and costs when using different transportation modes.

The rest of this chapter is organized as follows. In Section 3.2, we use a simple Eco-
nomic Order Quantity (EOQ) model to illustrate the tradeoffs between costs and emis-
sions. Section 3.3 presents the formulation for the supplier selection problem. Section 3.4
presents models that capture carbon constraints and costs. In Sections 3.5 and 3.6, we dis-
cuss the data collection and analyze the results of our numerical experiments. We conclude

with the observations from our study in Section 3.7.

3.2 An Illustrative Replenishment Model

We use an illustrative example of the EOQ model in order to show how transporta-

tion mode selection decisions are affected by carbon regulatory mechanisms. The goal
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is to provide some insights about the impact of carbon emission limitations on inventory
replenishment decisions.

Table 3.1 summarizes the data used in this example. Consider a facility that uses three
different suppliers to replenish inventories. The annual requirements at the facility are
3,000 tons. Suppliers are located 50, 150, and 400 miles away from the plant. Depend-
ing on transportation distance, and the availability of transportation infrastructures, these
suppliers have access to different transportation modes. Table 3.1 lists the available trans-
portation mode, unit variable cost (¢), fixed order cost (K), and unit inventory holding cost

(h) for each supplier.

Table 3.1

Problem Inputs for the EOQ Model

Notation Supplier Transp. Distance Var. Costs Fixed Costs Inv. Hold. Costs

# Mode  (miles) ($/(mile*ton))  ($/Order) ($/(ton*year))
S1 M1 1 Truck 50 10 20 0.005
S2 M2 2 Rail 150 5 400 0.005
S3 M3 3 Barge 400 1 2,000 0.005

Table 3.2 provides the unit emissions due to transportation (in kilograms (kg) of CO,
per ton and per mile shipped) for each supplier. Total transportation-related emissions are
a function of the distance traveled and transportation mode used. Emissions due to storage
are considered to be fixed at 0.1 tons of COs, per year. Details about the methodology used

for generating costs and emissions-related data are provided in Section 3.5.
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Table 3.2

Emissions Due to Transportation

Supplier Distance Mode Capacity Emissions Emissions
(miles) (tons) (kg COo/(mile*ton)) (kg COo/ton)

S1 M1 50 30 0.06 1.8

S2 M2 150 100 0.03 3.0

S2 M3 400 1,000 0.01 10.0

Suppose that a carbon cap mechanism is used to control emissions in the supply chain.
Such a mechanism forces total emissions (over some time horizon) to be less than the
cap. Figures 3.1(a) and 3.1(b) present the total cost and total emission curves for different
order quantities. If emissions were not considered in this problem setting, then replen-
ishment of inventory from the 3rd supplier using barge provides the minimum costs (see
Figure 3.1(a)). Consider the case when a carbon cap of 10 tons per year exists. In this case,
only shipments from supplier 1 can meet the emissions requirement (see Figure 3.1(b)).
Supplier 1 is located nearby the facility, and therefore, this supplier’s total emissions are
the smallest. The EOQ for this supplier is 4,899 and corresponding total costs are $31,225.
Consider the scenario when the carbon cap is increased to 13 tons per year. Under such
a scenario, shipments from suppliers 1 and 3 are considered due to their emission levels.
Inventories are replenished through Supplier 2 which has lower total emissions than the
cap.

The results from this numerical example indicate that transportation mode selection
decisions are not only impacted by the tradeoffs that exist between inventory and trans-

portation costs, but also by the tradeoffs that exist between costs and carbon emissions
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in the supply chain. For example, emission per ton and per mile traveled are highest for
truck transportation as compared to barge and rail. However, emissions per ton shipped
are smallest for supplier 1 who uses truck and is located 50 miles away from the plant.

Consequently, total emissions are minimized when using supplier 1.

3.3 Supplier Selection Problem

This section discusses the mathematical model we propose in order to identify a re-
plenishment schedule that minimizes total supply chain costs. In the following sections we
define and formulate the problem; then we describe an algorithm that solves the problem

in polynomial time.

3.3.1 Problem Description

Our supply chain consists of a single facility and its suppliers. The facility could be a

manufacturing facility, or a retailer making inventory replacement decisions every period
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within a fixed planning horizon of length 7. A “supplier” in our model corresponds to a
unique combination of a supply firm and a particular transportation mode. Thus, there may
be multiple “suppliers” for a given supply firm- but one for each transportation mode.

A facility can replenish its inventories using local or distant suppliers. Typically, if
shipment delivery time is not a concern, a facility can increase the supplier pool size by
considering suppliers located further away, which increases the likelihood that the facility
will be able to identify suppliers (e.g., wholesalers) that can provide products at a competi-
tive price. Depending on the distance traveled and transportation mode accessibility, barge,
rail, or truck can be used to replenish inventories. The facility may, alternatively, replen-
ish inventories using nearby suppliers who can respond in a timely manner. Because of
short travel distances, these suppliers tend to use truck shipments. Shipments are initiated
depending on the size of a shipment,e.g., full truck load (FTL) or less-than-full truck load
(LTL). Somewhat paradoxically, replenishment costs from local suppliers are often higher
compared to more distant suppliers, mainly due to frequent LTL shipments, as opposed
to the FTL shipments from more distant suppliers. Our goal is to identify suppliers and a
replenishment schedule that minimizes total replenishment (purchase and transportation)
and inventory holding costs.

In this problem, operations costs consist of replenishment and inventory holding costs.
Replenishment costs from supplier i (i = 1, ..., ) in period ¢ consist of a fixed order cost
(f:x) and a variable cost (c;;). Recall that a supplier in our model is defined by the combi-
nation of a physical supplier and specific transportation mode. Thus, the fixed order cost

consists of the costs necessary to process an order as well as to load or unload a shipment.
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Figure 3.2

Network representation of a two-period, three-supplier problem

The variable cost consists of the purchasing cost and distance-dependent transportation
costs. These costs are a function of quantity shipped. A unit inventory holding cost is
charged per unit of inventory held at the facility at the end of each time period (h;).

Figure 3.2 provides a network representation of a two-tier supply chain problem with
three suppliers and one facility. The time horizon consists of two time periods.

This network contains one dummy node, a total of 7" facility nodes (one node per time
period), and [ «T" supplier nodes. The dummy node has a supply equal to the total demand
over the planning horizon. A facility nodes ¢ has a demand equal to d;, which denotes
demand in period ¢ (¢ = 1,...,T). The supplier nodes correspond to each supplier in
every time period. The network has /7T replenishment arcs, 7'— 1 inventory arcs and [ T’
dummy arcs. Replenishment arcs connect suppliers with the facility in each time period.

The cost per unit flow on a replenishment arcis ¢;; ¢ = 1,...,1;¢t = 1,...,T). There is
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also a fixed cost for using supplier ¢ in period ¢ equal to f; (: = 1,..., I;t =1,...,T)
which is incurred when using a replenishment arc. Inventory arcs connect the facility

nodes in consecutive time periods. The cost per unit of flow on an inventory arc is h;

An optimal solution for this problem consists of a set of paths, with each path originat-
ing at the dummy node and ending at a facility node. These paths identify the suppliers and
transportation modes used to satisfy demand at minimum cost. We refer to such a solution
structure as a tree solution. Note that we will assume that demand must be satisfied in

every time period, i.e., backorders are not allowed.

3.3.2 Problem Formulation under Cost Minimization

We define decision variables for our models as follows. y;; is a binary variable, which is
equal to 1 if a shipment is received from mode 7 in period ¢ and O otherwise. g;; represents
the amount received from mode ¢ in period . H; denotes the amount of inventory carried
from period t to ¢ + 1.

The following is a mixed integer programming formulation of the cost minimization

model. We refer to this as model (P).

I T
minimize Z Z{fityit + citqir + heHy} (3.1)
=1 t=1
1
Subject to > qu+He—d = H, t=1,...,T (3.2)
1=1
Hy = 0 (3.3)
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@ < Q dya i=1l.. Lt=1...T (34
T=t
ye € {0,1} i=1,....;t=1,....,T (3.5
g, H, > 0 i=1,....Lt=1,....T  (3.6)

The objective function of (P) minimizes total costs. Constraints (3.2) are the inventory
balance constraints. Constraints (3.3) set the initial inventory to zero. Constraints (3.4)
connect continuous and binary variables, and ensure that no flow is shipped from supplier ¢
in period ¢, unless y;; = 1. The remaining constraints are the binary and the nonnegativity
constraints, respectively.

Jaruphongsa et al. [59] have studied the ELS problem with two-mode replenishment
options. Their replenishment cost function is different from model (P) since it possesses
a multiple-setup structure to account for cargo capacities. Eksioglu [28] studied the ELS
problem with multi-mode replenishment costs and cargo capacity constraints. Thus, model
(P) is a special case of the problem discussed by Eksioglu [28].

Problem (P) is an extension of the traditional ELS problem introduced by Wagner and
Whitin [104]. An optimal solution to both problems has the Zero Inventory and Single
Source properties, as shown in Proposition 3.1. Therefore, one can extend existing algo-
rithms for ELS ([35, 104, 103]) in order to solve (P). Eksioglu [28] proposes an exten-
sion of the dynamic programming algorithm of Wagner and Whitin [104] that solves the
ELS model with multi-mode replenishment and fixed-charge cost function, model (P). We

present this algorithm in Theorem 3.1. Problem (P) is also a special case of the lot sizing
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problem with substitutions with a single end-product and multiple substitutable compo-
nents [7].

Note that the classical ELS problem assumes that a single supplier and a single trans-
portation mode are used to replenish inventories. A number of studies have generalized the
classical ELS model with various considerations. These extensions include finite produc-
tion capacity models [11, 36], multi-echelon models [60] and multi-item models [8, 66].
The general purpose of these extensions is to replicate real problems faced by manufac-
turing companies. However, because of current pressures on logistics activities to ensure
sustainable practices, additional extensions of this problem class are practical and rele-
vant. This is one of the motivations for this research, in addition to the need to develop
replenishment planning decision models and policies that account for the carbon footprint

of transportation modes.

3.3.2.1 Proposition 3.1

There exists an optimal solution to (P) such that:

Caq, = 0 il=1,...  Li#lt=12..T (3.7)
¢GH , = 0 i=1,... Iit=1,....,T (3.8)
I
H Y q) =0 t=1,....T (3.9)
=1

Problem (P) minimizes a concave (fixed charge) cost function over a polyhedron.
Therefore, optimizing (P) results in an extreme point solution. The extreme points of prob-
lem (P), which is an uncapacitated network flow model, correspond to tree solutions in the

network model described above (Figure 3.2). The tree structure of an optimal solution im-
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plies that demand is satisfied either by using existing inventories or receiving a shipment
(Zero Inventory Property), but not both. The tree structure of the optimal solution also
implies that inventories are replenished using a single supplier and a single transportation

mode (Single Source Property).

3.3.2.2 Theorem 3.1

There exists a dynamic programming algorithm that solves problem (P) in O(IT?).

By the Zero Inventory Property of (P), an optimal replenishment schedule exists such
that if period ¢ is a replenishment period, the corresponding replenishment quantity equals
Zt;;tl d, for some t < ' < T + 1 (where ¢’ is the next replenishment period after period
t, and we use the dummy period 7' + 1 as a final replenishment period in any solution
by convention). By the Single Source Property of (P), the minimum cost associated with

periods ¢ through ¢’ — 1 equals

i=1,...,

v—1
gttt = {,mlnl(fit + Citdt,t’—l)} + Z; hedriip—1, (3.10)

where, d. ; = Zizk drand k =1,...,Tand 0 < k < j < T. Because any solution
contains a sequence of setup periods, we can solve problem (P) by solving a shortest path
problem in an acyclic network. That is, we create a graph G, where the total number
of nodes in G is T' + 1, with one node per time period plus a dummy node (7' + 1).
Traversing arc (t,t") € G represents the choice of satisfying demand for periods ¢, ..., t'—1
using a replenishment in period ¢. The cost of arc (¢, 1) is ¢;, and the supplier used for
replenishment in period ¢ is the one that gives the minimum in (3.10). The goal is to find

the shortest path from node 1 to 7"+ 1 in G.
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For any given supplier, we can determine all arc costs associated with the supplier in
O(T?) time. Thus, computing all arc costs for every supplier takes a total of O(IT?) time.
Then, for each of the O(T 2) arcs, we can determine the minimum cost supplier associated
with the arc in O(I) time for a total of O(IT?) time. Finally, we can solve the shortest
path problem in O(T?). The total worst-case complexity is therefore O(IT? + IT? + T?)

which implies a worst-case complexity of O(IT?).

3.4 Modeling Supply Chain Emissions Constraints and Costs

In this section we describe the supplier and transportation mode selection problem
under a number of carbon regulatory mechanisms, including carbon cap, carbon tax, carbon
cap-and-trade, and carbon offset. These models explore the tradeoffs between costs and

emissions in this two-level supply chain.

3.4.1 Problem Description

Consider the two-tier supply chain described above which consists of a facility and a
number of suppliers (Figure 3.2). The facility has the option to use nearby suppliers to re-
plenish its inventories, or use suppliers located further away. In addition to costs, concerns
about emissions now impact replenishment decisions made by the facility. Transportation-
related emissions for shipments from local suppliers are typically low due to shorter dis-
tances traveled. Emissions per ton and per mile for barge and rail are smaller than those
from trucks. However, depending on the transportation distance, the total emissions for

long hauls using rail and barge may be higher. The objective of the models we propose is
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to identify a replenishment schedule that minimizes the total system costs and the carbon
footprint of this supply chain.

We assume that carbon emissions in this supply chain result from transportation ac-
tivities and holding inventory. We separate transportation related emissions into fixed ( fi)
and variable (¢;) emissions. Fixed emissions are mainly due to loading and unloading of
a shipment. These emissions depend on the transportation mode used since the equipment
required to load and unload a barge, rail car, or truck, is different. Variable emissions also
depend on the transportation mode used since the amount of carbon emitted per ton and
per mile traveled by truck is different from that of rail or barge. Our model also considers
emissions that may result from holding inventories. For example, the emissions per unit
of inventory held in a time period (he) depend on the heating/cooling system at the facility

(note that we do not consider perishable products, however).

3.4.2 Formulation for Carbon Cap Mechanism

We now discuss a first extension of model (P) that applies a carbon cap mechanism over
the finite horizon. As a result, the total carbon emitted into the horizon due to transporta-
tion and inventory activities cannot surpass this cap. To represent the existence of such a
mechanism mathematically, we add a constraint to our model. Constraint (3.12) limits the
total emissions in the supply chain to C, the carbon cap level over the horizon. We refer to

this as model (P_CC).

I T
minimize Y Y {fiyie + cugi + heH, } (3.11)
=1 t=1
Subject to (3.2) — (3.6)
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I T
SO (fayie + g + heHy) < C (3.12)

The objective function of (P_CC) minimizes total costs, subject to flow conservation
constraints, setup forcing constraints and a carbon emission constraint (3.12). This model,
in addition to cost, keeps track of emissions from inventory holding, transportation and
loading/unloading activities. While the firm still minimizes supply chain related costs, it
must ensure that the carbon constraint is not violated. This additional constraint can poten-
tially increase total costs and impact supplier and transportation mode selection decisions.

In Theorem 3.2, we show that the problem is NP-hard even for a special case of model
(P_CC) with a single supplier. Work by van den Heuvel et al. [102] demonstrates that
a special case of model (P_CC) with a single replenishment mode (single supplier), and
non-speculative cost structure, is NP-complete. Work by Helmrich et al. [41] shows yet
another special case of (P_CC) with two replenishment modes, and time-invariant costs
and emissions, is NP-bard. Since these special cases of (P_CC) are NP-hard, we conclude
that problem (P_CC) is NP-hard. In Proposition 3.2 we show that whether problem (P_CC)
has a feasible solution or not can be identified in O(IT?).

Work by Helmrich et al. [41], Mooij [73], and Ty [95] proposes solution approaches
for the single-supplier version of (P). These approaches rely on Lagrangian relaxation,
variable neighborhood search, and other pseudo-polynomial time algorithms. Absi et al.
[1] proposes models and analyzes the complexity for variations of the emissions constraint,

such as, time-cumulative emission cap, period-by-period cap, rolling cap, and global cap.
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3.4.2.1 Theorem 3.2

Problem (P_CC) is NP-hard.
We show that the problem is NP-hard even for a special case of model (P_CC) with a

single supplier. Consider the problem

T
minimize Y {fuye + coqe + heHy} (3.13)
t=1
Subject to @+ H_1—d, = H, t=1,...,T (3.14)
Hy = 0 (3.15)
¢ < dirye  t=1,...,T  (3.16)
T
S (foyn + e + heHy) < C (3.17)
t=1
y e {0,1} t=1,...,T  (3.18)
q, Hy > 0 t=1,....T (3.19)

We begin with an instance of the knapsack problem (KP) in which we have n items,
where item j has value r; and weight w; for j = 1,...,n (assume without loss of gener-
ality that all r; and w; are positive). The knapsack problem determines a subset of items

S C N={1,...,n}such that > ._sw; < C (for some positive real number C') with a

j€S
maximum value of 3¢ 7;.

Given an instance of KP we create an instance of (P) that equivalently solves KP. We
create the instance of (P) as follows.

1. For each item j, create two periods t; = 25 — 1 and ¢, = 27 (thus T" = 2n).

2. Forj=1,...,nsetd; =0 and d;
1 in each pair of periods.

i+1 = 1 so we have alternating demands of 0 and

32

www.manaraa.com



3. Forj=1,...,nset f;, = r; + K for some positive constant K and let f;  , = K
(note that fy, | = fi, — ;).

4. Forj=1,...,nseth;; =0and hy,,, = M for some large positive number M.
5. For j = 1,...,nsetftj :()andﬂ],rl = wj.

6. Fort:1,...,2nsetct:ét:ﬁt:0.

Items 2 through 4 above imply that an optimal solution will never set both y;. and
Yt;,, both equal to one, and the requirement that we meet all demands in problem (P) thus

implies that for any j we must have y;, + y;,,, = 1 in an optimal solution. Our assump-

J+1

tions on cost and demands imply that for each 5 we must therefore produce the demand
in period t;; in either period ¢; or ¢;;; in an optimal solution. We can write our ob-
jective function value as » 77, {fo,ue, + fry Wy b = P { o, + (fy, =)y b =
Z?Zl {ftj(ytj + Yiy0) — ijtjﬂ} = Z?:l fi; — Z?:l Tt

Thus, this special case of (P) is equivalent to

n

maximize Z T5Yt; 41 (3.20)
j=1
Subject to S foaw, < C (3.21)
j=1
Y., € 10,1} j=1,...,n (3.22)
Because ft]. . = w; forj =1,... n, the above is equivalent to our knapsack problem.

3.4.2.2 Proposition 3.2

One can identify whether problem (P_CC) has a feasible solution or not in O(IT?).
If carbon emissions were minimized instead of costs, the model would reduce to prob-

lem (P) and the optimal solution would thus be a tree solution. This is because the emis-
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sions function £; for supply mode 7 in period ¢ (defined below) is concave, and the sum of

concave functions (Y.1_, 31 Ej;) is concave.

ﬁ + CuQit + itht if supplier 7 is used in period ¢
Ei(qit, Hy) = (3.23)
0 otherwise
As is the case with problem (P), an optimal solution to this problem will satisfy the Zero
Inventory and Single Source properties. This problem can be solved to optimality using
the dynamic programming algorithm in O(IT?). Therefore, identifying whether problem
(P_CC) has a feasible solution takes O(I7?). In this case, one would solve the variation of

problem (P) which minimizes emissions rather than costs. If the corresponding minimum

function value is less than the cap C, the problem at hand has a feasible solution.

3.4.3 Formulation for Carbon Tax Mechanism

Under a carbon tax mechanism, a facility is charged a fee for each unit of C'O, emit-
ted. Let « denote the tax charged per unit of C'O, emitted. The corresponding model

formulation is called model (P_CT).

1 T
minimize Y > {(fie + o fi)yie + (cie + 0éi)qic + (he + ahy) Hy} (3.24)

=1 t=1

Subject to (3.2) — (3.6)

The objective function minimizes the total replenishment costs, inventory costs, and
emission taxes. Formulations (P_CT) and (P) have the same feasible region, but slightly
different cost functions. However, both functions contain the same mathematical structure.

Therefore, an optimal solution to (P_CT) (as discussed above for (P)) will satisfy the Zero
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Inventory and Single Source properties. The same dynamic programming algorithm can

thus be used to solve this problem in O(IT?) time in the worst case.

3.4.4 Formulation for Carbon Cap and Trade Mechanism

A carbon cap is imposed on the facility under a carbon cap-and-trade mechanism. How-
ever, a carbon market also exists, which allows the facility to sell unused carbon credits at
a profit, or to purchase carbon credits if needed to satisfy customer demand (the European
Union Emissions Trading system was the first large emission trading scheme in the world).
Let e, (e; ) denote the amount of carbon credit purchased (sold) in period t. We denote the
market price per unit of carbon by p. The following model minimizes total system costs

under a carbon cap-and-trade mechanism. We refer to this as model (P_CCT).

I T T
minimize » Y {fuyie + cagi + bH} +p Y (e —€;) (3.25)
=1 t=1 t=1
Subject to (3.2) — (3.6)

1 T T T
SN (i + g+ heH)+> e < C+ ) e (3.26)

i=1 t=1 t=1 t=1
e, e > 0 Wt (3.27)

Note that in an optimal solution of (P_CCT), constraints (3.26) are necessarily binding.
For any solution such that the left-hand side is less than the right-hand side, we can decrease
the objective (assuming p > 0) by increasing the value of one or more e, variables. We
can thus re-write constraint (3.26) as follows: Zle ZtT:l(fiyit + Ciqi + thHt) —C =
ST (ef — e;). We can then substitute S, (ej — e;) out of the objective function of

(P_CCT) as follows:
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I T I T
min Z Z{fityit + cauie + heHi} + p{z Z(fzyzt + Ciqie + heHy) — C} (3.28)

i=1 t=1 i=1 t=1
Next, we setﬁt = fu +pﬁ-, ¢; = ¢y + pc;, and izt = hy —|—pﬁt forall: =1,...,1 and

t=1,...,T. We can re-arrange the terms in the objective function to obtain:
T .
minimize Y Y {fiyie + Cugi + heH,} — pC (3.29)
i=1 t=1

Note that in this objective function, pC' is a constant, and so we can remove it from
the objective without loss of optimality. After this transformation, the feasible regions of
(P) and (P CCT) are identical, as is the mathematical structure of the objective function in

both cases. Therefore, we can use the dynamic programming approach to solve this

problem in O(IT?) time.

3.4.5 Formulation for Carbon Offset Mechanism

A carbon cap is imposed on the facility under a carbon offset mechanism, and a carbon
market also exists that allows the facility to purchase carbon credits. However, under
a carbon offset mechanism, a facility cannot sell unused carbon credits. The resulting

problem formulation, which we denote by (P_CO), is as follows.

I T T
minimize » Y {fuyi + cagi + b H} + ) pef (3.30)
=1 t=1 t=1
Subject to (3.2) — (3.6)
I T T
> (fyi+ Gign + heHy) < C+) et (3.31)
i=1 t=1 t=1
ef > 0 Wt (3.32)
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The objective function minimizes total costs, including the cost of purchasing offsets.
A voluntarily carbon offset market exists in the US, wherein a variety of consumers buy
offsets, including individuals, businesses, nonprofit organizations, governments, universi-
ties, etc. Major motivations for purchasing offsets are corporate responsibility and public
relations [101]. Observe that (P_CC) corresponds to the special case of (P_CO) in which p

is a very large number. Because (P_CC) is NP-hard, the same therefore holds for (P_CO).

3.4.6 Summary of Model Formulations

We propose four extensions of Model (P) which capture the impact of carbon regu-
latory mechanisms on supplier and transportation mode selection decisions in the supply
chain. The mechanisms we investigate are carbon cap, carbon tax, carbon cap-and-trade
and carbon offset. The models for carbon tax and carbon cap-and-trade mechanisms are
easily solvable. We present a dynamic programming algorithm in the Appendix which
solves these problems in polynomial time. The models for carbon cap and carbon off-
set mechanisms are NP-hard. In our numerical analysis, we use CPLEX to solve small
instances of these problems. The two NP-hard models imply that solution times, when
the problems are solved using standard MILP solvers, will be impractical as the problem
sizes grow. Both models include a single carbon cap constraint. In the absence of this
constraint, the problems are shown to be polynomially solvable. Thus, relaxation of this
constraint leads to easily solvable subproblems. Considering this fact, one can develop La-
grangian relaxation-based algorithms to generate good lower and upper bounds for these

difficult problems. It is also possible to generate upper bounds for these models by remov-
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ing the carbon cap constraint, and changing the objective to minimizing the total carbon
emissions. However, we do not provide details for these algorithms since this is beyond the
scope of this paper, which focuses on demonstrating how carbon regulatory mechanisms

influence costs and emissions in a biofuel supply chain.

3.5 Data Collection and Analysis

In this section we discuss our data collection and analysis. The models discussed above
consider inventory replenishment decisions for a single commodity. The product on which
we focus in this analysis is forest residue. Due to its physical characteristics of bulki-
ness, barge, rail, and truck may be used for shipping. The choice of the transportation
mode depends on the travel distance and the associated level of carbon emissions. Forest
residues are raw materials that can be used by biorefineries to produce cellulosic ethanol.
We assume that such a biorefinery can meet its demand for forest residues using suppliers
located nearby, or other suppliers around the nation. Canada is rich in forest, and therefore
Canadian companies can be potential suppliers of forest residues. These suppliers may use
rail or barge to ship their products to the US.

Table 3.3 summarizes some of the parameters our study used to generate data related
to suppliers. We use uniform distributions to randomly generate transportation distances
and variable replenishment costs. The selection of purchasing costs (at the roadside) is
motivated by the following fact. The US Department of Energy (US DOE) estimates that
for a price ranging from $20 to $80 per dry ton at the roadside, quantities of forest biomass

currently available for production of biofuels would vary (at the national level) from 33
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to 119 million dry tons (MDT) annually. However, for the biofuels industry to thrive,
high levels of biomass should be available at lower prices. The US DOE is investigating
a number of technology improvements, such as pre-processing of biomass, that would
reduce these prices in the near future [42]. The data in the table indicates a decrease in
purchasing costs as we consider suppliers located further away. This is mainly because
the pool of available suppliers increases as we consider suppliers located further away. A

larger supplier pool provides the facility with more competitive prices.

Table 3.3

Input Data Generation

Distance Number Purchasing Costs
(in miles) of Suppliers (in $)
U[5-25] 5 U[40-42]
U[25-100] 5 U[38-40]
U[100-500] 5 U[36-38]
U[500-1,000] 15 U[34-36]
U[1,000-1,500] 15 U[30-35]

Table 3.4 presents the scheme we use to assign transportation modes to suppliers. We
assume that suppliers located within 25 miles of the facility will use truck shipments only.
The suppliers located between 25 and 100 miles have access only to truck shipments with
a 50% chance, or both truck and rail by the remaining 50% chance. Thus, if both truck
and rail are available for a supplier, it represents two different replenishment modes for our
models. The percentage of usage between these two replenishment modes is determined as

a result of the models. Similarly by a 50% chance, the suppliers located between 100 and
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500 miles have access to both truck and rail; or all modes of truck, rail and barge by the
remaining 50% chance. As distance increases, the percentage of suppliers that have access
to all modes of transportation increases. We use this scheme to also capture the reality
that some suppliers may not have access to barge or rail due to the limited rail and barge

infrastructure.

Table 3.4

Transportation Mode Assignment Scheme

Distance Truck Truck&Rail  Truck&Rail
(in miles) (in %) (in %) &Barge (in %)
U[5-25] 100 0 0
U[25-100] 50 50 0
U[100-500] 0 50 50
U[500-1,000] 0 30 70
U[1,000-1,500] 0 0 100

Table 3.5 presents the scheme we use to generate variable costs for truck transportation.
Variable transportation costs depend on the distances traveled and the quantities shipped;
therefore, the unit costs presented in the table are charged per mile and per ton traveled. The
intervals that we use to calculate costs were generated by analyzing data made available
by the Agricultural Marketing Service (AMS) of the US Department of Agriculture. The
AMS publishes quarterly reports which present truck transportation trends for agricultural
products in different regions of the US [2]. The data in the table presents the average

national rates charged during the last six quarters, beginning in January 2011.
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Table 3.5

Variable Costs for Truck Transportation

Distance Unit cost
(in miles) (8/(mile  ton))
[0 —25]  U[0.0801-0.2401]
[25 — 100] U[0.0457-0.1857]
> 100 U[0.0346-0.1746]

We randomly generated the fixed cost and variable costs for rail shipments. To identify
these costs, we investigated the web-sites of Class I railway companies,such as CSX Trans-
portation and BNSF Railway. These companies provide quotes (in $ per rail car) for dif-
ferent products and different origin-destination pairs. We used the data provided for forest
products to derive regression equations. The independent variable in these equations is the
distance traveled, and the dependent variable is the price charged per rail car. The value of
R? for these equations was 70% and the p-values of all independent variables were smaller
than 0.1%. These values indicate that transportation distance has a great impact on the
price charged. Based on these results, we decided to generate the fixed transportation cost
using the following uniform distribution U[$2, 500, $3,500] (in$/shipment), and the unit
variable cost using the following uniform distribution U[$0.008, $0.2] (in $ /(mile*ton)).

We also use data from AMS publications to derive transportation costs for barge. Based
on this data, we generated the variable transportation cost using the following uniform
distribution U[$0.100, $0.112] (in $ /(mile*ton)).

Our case study also considers the in-transit inventory costs. This is very important as

the travel time differs substantially in different transportation modes. To calculate these
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costs, we first identify the travel time (in number of days) per shipment using information
about travel distance and the average speed of the transportation vehicle. We assume the
average speed for a truck is 65 mph, for rail 18 mph, and for barge 6.25 mph; vehicles
operate for a total of 16 hours per day, and vehicles operate for 350 days per year. The
annual unit inventory holding cost (in $ /ton) is set equal to 20% of the unit purchase
cost. We then use trip duration and unit inventory holding costs to calculate the inventory
holding costs per ton shipped.

In our optimization model (P), the total unit replenishment cost for supplier ¢, ¢; (in
$/ton), is the sum of the unit purchasing, transportation and in-transit inventory holding
costs. The unit purchasing cost for supplier ¢ is charged per ton of product replenished.
Since variable transportation costs are provided in $/(mile*ton), we multiply a supplier’s
transportation distance by the variable transportation cost in order to calculate a variable
transportation cost per ton shipped from supplier <.

We consider a time horizon of 7" = 12 months, with £ = 1,...,12. We assume that
demand for forest residues in each month is uniformly distributed between 80, 000 and
100,000 tons. The conversion rate is estimated to be 60 gallons of ethanol per ton of
residues [14]. Thus, the production capacity of the facility ranges between 57.6 and 72
MGY.

Let us now discuss the approach we used to collect emissions related data. In order
to calculate emissions from material handling, we assume that loading and unloading of
trucks, rail cars and barge are completed using loaders. The maximum allowable load for

trucks (30 tons) is much smaller than rail (100 tons) or barge (1,500 tons) [58]. For a 30
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ton truck, the loading time of forest residue bundles takes about 45 to 50 minutes, and
unloading takes about 50 to 55 minutes [82]. We assume that a loader with horsepower
of 140 and fuel consumption of 0.0217 gals/(hp*hr) is used [72]. It is estimated that the
consumption of one gallon of diesel fuel emits 9, 922 grams of CO, [32]. We assume that
all modes of transportation use the same loading and unloading equipment, and therefore,
we calculate the fixed emissions in tons of CO, per ton loaded and unloaded as follows:
(duration of loading and unloading activities) * 0.0217 * 140 * 9,922 * 10=¢ / 30. Loading
and unloading times are given in hours.

We also consider emissions due to storage of forest residues. A study by Wihersaari
[108] indicates that greenhouse gas emissions from storage can be much greater than emis-
sions from the transportation of forest residues. The study indicates that “Greenhouse gas
emissions are probably methane, when the temperature in the fuel stack is above the am-
bient temperature, and nitrous oxide, when the temperature is falling and the decaying
process is slowing down.” Following this study, we consider emissions due to storage and
inventory to be uniformly distributed between 5 and 10 kg per ton of forest residues held
in inventory every month.

We use the method developed by Hoen et al. [43] to calculate emissions from trans-
portation. Hoen et al. [43] provide the following equations to calculate emissions for
transportation via truck, rail and barge. In these equations, transportation distance D is

in kilometers, the load weight w is in kilograms, v denotes volume, and p denotes density.
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Coruck = v * maxz(250, p) * (0.0002089 4 0.00003143D) (3.33)
Crail = 2.223 % 107° % D * w (3.34)

Charge = 1.3904 x 107° % D x w (3.35)

3.6 Observations from Experiments

In this section, we discuss important observations related to the impact that different
carbon regulatory mechanisms have on costs, emissions, and transportation mode decisions
in this supply chain.

Below, we summarize the results from solving a wide variety of problems we generated
using our data. Note that each point in any of the graphs represents the average results from
solving 10 different randomly generated problem instances corresponding to the settings
described for that particular problem.

Through our experiments we are also interested in investigating the impact that techno-
logical improvements may have on reducing carbon emissions in the supply chain. Tech-
nology improvements, for the purposes of this paper, correspond to improvements in fuel
efficiency for transportation vehicles. These tests are motivated by a recent announcement
from the US Department of Energy to fund nine projects (for a total of $187 million) that
propose improvements in the fuel efficiency of heavy duty trucks and passenger vehicles
[98].

We define Technology 1 to be the base case scenario (i.e., business as usual). Due

to improvements in fuel efficiency for Technologies 2, 3, and 4, carbon emissions are
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reduced by 10%, 20%, and 30%, respectively, as compared to Technology 1. Improving the
fuel efficiency of transportation vehicles doubtlessly does not come free and will require
investments. However, identifying these costs is not easy and not relevant to this paper,
so we do not apply an arbitrary cost. Thus, our sensitivity analysis (and cost savings
estimated) to identify the maximum investments in these technologies in order to break
even.

We solved all associated mixed integer programming models using the ILOG/ CPLEX

commercial solver.

3.6.1 Carbon Cap

Figure 3.3(a) illustrates the relationship between costs and emissions under a carbon
cap mechanism. We consider an annual carbon cap which varies from 2,850 tons to 10,000
tons. We did not investigate smaller cap values because these led to infeasible problem
instances for model (P_CC).

Five curves appear in Figure 3.3(a). The straight line at the bottom shows the total
costs if no carbon cap exists. The total emissions in this case equal 7,145 tons. The top
curve (Technology 1) represents the cost-carbon relationship when the supplier replenishes
inventories using existing transportation vehicles with a relatively low fuel efficiency. The
remaining curves correspond to the technological improvements in vehicle fuel efficiency
as described above.

Figure 3.3(a) indicates a decrease in total system costs as the carbon cap increases. The

decrease in cost is steeper when the carbon cap is tighter. As the carbon cap increases, the
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curves become flatter and converge to the no-cap solution. At low levels of the carbon cap,
the cost of maintaining operations (in order to satisfy demand) is higher compared to high
levels of the carbon cap. The difference in costs between these technologies increases as
the carbon cap decreases. This indicates that the benefits from technology improvements
become more evident as the carbon cap gets tighter.

Figure 3.3(b) displays the amount of cost savings achieved by using better technologies
instead of the base-case technology. This graph provides insights about the value that each
technology generates for the facility, at different levels of the carbon cap. One can use
these cost savings to identify when (under what cap) it becomes worth investing in any
technology improvements. Note that, the optimization models used find a minimum cost
solution. Such a solution identifies changes in the operational decisions, such as supplier
and transportation mode selection. Thus, the cost savings presented in these graphs result
from the deployment of new technologies as well as due to operational changes.

Figure 3.4 shows that, under a carbon cap mechanism, the amount of carbon emitted
closely follows the carbon cap. As the carbon cap increases, the curves become flatter. The
reason for the linear increase in emissions for tight caps is that there is no motivation for
a facility to use less carbon than what is allowed by the cap. Technology improvements
allow the facility to perform the same operations at a lower level of emissions. However,
the facility can further reduce costs by exploring a larger pool of suppliers who are not
necessarily located nearby (see Figure 3.5). Therefore, total emissions remain the same,

and total supply chain costs decrease with technology improvements.
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A carbon cap mechanism impacts transportation mode selection decisions. Figure 3.6
shows the percentage use of each transportation mode under each technology. Intuitively,
selection of truck transportation is not anticipated at low levels of the carbon cap because
trucks have higher emissions per mile and per ton compared to rail and barge. However,
Figure 3.6(a) indicates that when the carbon cap is small, inventories are primarily replen-
ished using truck shipments from local suppliers. A company minimizes emissions by
minimizing traveled distance. As the carbon cap increases, other modes of transportation
are explored (see Figure 3.6(b) and Figure 3.6(c)). The volume shipped using rail trans-
portation increases at a faster rate than the volume shipped by barge because only a small
number of suppliers have access to barge.

We highlight a few additional observations from comparing the graphs in Figure 3.6.
First, technology improvements clearly impact transportation mode selection decisions and
related costs. As the technology improves, the volume shipped using cost efficient trans-
portation modes increases for tight carbon caps. For example, under Technology 1, at a
carbon cap of 3,350 tons, the volume shipped using road is 41%, rail 54%, and barge 5%
of the total. At the same level of carbon cap, under Technology 3, the volume shipped by
road decreases to 15%, rail increases to 75% and barge increases to 10% of the total. These
modal shifts result in lower transportation costs.

Second, all the curves in these figures are steeper at low levels of the carbon cap. These
curves become flat and overlap when the cap is over 5,000 tons. This behavior indicates

that the system is very sensitive and reacts fast to changes in the carbon cap when the cap is
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tight. At high levels of the carbon cap, the system stabilizes where 90% of the total volume
is shipped using rail, and 10% using barge transportation.

In summary, a carbon cap is an effective tool to reduce emissions from transportation
activities in the supply chain. Improvements in fuel efficiency of transportation vehicles
give companies room to make better transportation-related decisions. These improvements
have an impact on operational costs, but do not necessarily lead to reductions in emissions

(below what is required) under a carbon cap policy.

3.6.2 Carbon Tax

Figure 3.7(a) shows the relationship between costs and the carbon tax rate (in $/ton).
We use tax rate which vary from $0 to $6,000 per ton of CO, emitted. The $6,000 per ton
tax is a very high value, as related studies discuss tax rates which are not higher than $70
per ton [18]. However, the goal here is to analyze the behavior of the systems and identify
trends which in fact do become apparent at high levels of tax.

Figure 3.7(a) shows that the relationship between tax and carbon cap is almost linear
since we consider a fixed tax rate for every unit of carbon emitted. The gap between the
lines which represent different technologies widens as the tax rate increases indicating that
cost savings by using fuel efficient technologies increase with the tax rate. Figure 3.7(b)
presents cost savings achieved by switching from technology 1 to fuel-efficient technolo-
gies.

Figure 3.8 shows the relationship between total emissions and carbon tax rate. As the

tax rate increases, we initially see a drastic decrease in total emissions. This reflects the fact
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that the company seeks operational changes to reduce emissions and consequently costs.
However, the curve eventually flattens since, given the supply chain structure, there exist
no more operational changes which impact emissions.

The results in Figure 3.9 indicate that the average distance traveled decreases as the
carbon tax increases. However, this change does not occur linearly with the increase in
taxes. We observe that small tax rates will not force firms to change their behavior. Long
travel distances and high emissions prevail for tax rates smaller than $100. Figure 3.10
illustrates the shifts in transportation mode selection decisions as the carbon tax increases,
and as the fuel efficiency of transportation vehicles improves. When the carbon tax is rel-
atively small, rail and barge transportation are used to replenish inventories with suppliers
located further away. As the tax increases, road shipments from local suppliers increase.

The shape of the curves for different technologies is somewhat similar to the shapes in Fig-
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Carbon Tax Mechanism - Tech 1 - Costs and Distances

ure 3.6. However, the curves in Figure 3.10 are step functions, which indicate that mode
changes occur at discrete points in the tax rate. The graphs in Figure 3.6, on the other hand,
indicate a continuous reaction to changes in the carbon cap level. This continuous reaction
is mainly due to the carbon cap constraint which forces the supply chain to identify oper-
ational changes (such as supplier selection) that result in lower emissions at each level of

the cap.

3.6.3 Carbon Cap and Trade

In this section we present results from experimenting with the carbon cap and trade
mechanism. We assume that the company trades emission credits at the market price we

determine, and there is no limit on the amount of carbon traded at any of the market prices.
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Figure 3.11 shows the effect that a carbon cap and trade mechanism has on total costs at
different values of the carbon credit market price. As the market price of carbon increases,
the curves become steeper, indicating that changes in the carbon price have a greater impact

on total system costs.
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Figure 3.11

Carbon Cap and Trade Mechanism - Total Costs

Comparing the results in Figure 3.4 and Figure 3.12 shows the relationship between
the emissions and carbon cap levels in two different systems. Under a carbon cap mech-
anism, emissions initially increase linearly with the carbon cap. Emissions do not further
increase beyond a certain level of the carbon cap. However, under a carbon cap and trade
mechanism, the emissions level is constant, in spite of changes in the carbon cap level.
This is because, as the carbon cap increases, the facility can make a profit by selling car-

bon credits to the market. The existence of a carbon market is a motivation for the firm to
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Carbon Cap and Trade Mechanism - Total Emissions

improve emissions performance. Obviously, the goal is to minimize the costs of replenish-
ment and emissions. Therefore, the facility makes supplier selection decisions by looking
at the tradeoffs between emission-related costs/benefits and transportation costs.

The market price of carbon effects emission levels. The straight lines in Figure 3.12
indicate that emissions are smaller at higher levels of the carbon market price. Increasing
market prices provide strong motivation for the facility to reduce emission levels, and
as a result, reduce system costs either by selling unused carbon credits or by reducing the
amount of carbon purchased in order to maintain operations. Figure 3.13 shows the amount
of carbon purchased and sold at different levels of carbon cap. Figure 3.13(a) shows this
relationship when the market price is $40 per ton, while Figure 3.13(b) does it for a market

price of $100 per ton.
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At a higher market price, the firm will sell more and purchase less carbon to satisfy
customer demand. We assume that the firm is able to emit less carbon by changing its
operations decisions (e.g., by using local suppliers). At a higher carbon price, increased
replenishment costs are offset by the benefit of selling carbon credits saved to the market.
The slope of the line corresponding to the carbon credits sold is different under the two
different market prices. The line is steeper when market price is $40 per ton, indicating
that changes in the carbon cap will have a greater impact on the amount of carbon credits
purchased when the market price is lower. At higher market prices, the line that represents
carbon sales is steeper, indicating that a small change in the carbon cap will have a greater
impact on the amount of carbon sold. Note that above a certain carbon cap level (3,800 tons
for carbon price of $40) the facility purchases carbon in certain periods and sells carbon in
other periods in order to balance its operations while minimizing system-wide costs.

Under a carbon cap and trade mechanism, transportation mode selection is only deter-
mined by the carbon price (Figure 3.14). For a fixed carbon price, the percent of volume
shipped using each transportation mode is not affected by the level of the carbon cap. For
example, between $20 and $40 per ton, 90% of the volume is received by rail, and 10% by
barge. As the market price becomes more than $50 per ton, the volume shipped by barge

increases to 20%.

3.6.4 Carbon Offset

Figure 3.15 displays the relationship between the carbon cap and total system cost at

different levels of the market offset price. The carbon offset amount and corresponding
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prices impact total system costs. At low levels of carbon cap, the facility offsets the excess
carbon used in order to maintain operations. As the offset price increases, the facility faces
higher carbon offset costs. The curves belonging to different offset prices approach one
another as the carbon cap increases and eventually (when the cap is loose) converge to the
same total system cost (which corresponds to the total cost when there is no carbon cap).
These lines are also steeper for smaller carbon cap levels indicating that system costs are

more sensitive to changes in the offset price at smaller levels of carbon cap.
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Carbon Offset Mechanism - Total Costs

It is interesting to compare the curves in Figure 3.4,Figure 3.12, and Figure 3.16. The
shape of the emissions curves differ according to the carbon regulatory mechanisms. At a
low carbon offset price (such as $20-$40), the level of emissions under the carbon offset

mechanism is constant. This is similar to the behavior of the supply chain in a carbon cap
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Carbon Offset Mechanism - Total Emissions

and trade mechanism. However, as the carbon offset price increases, the level of emissions
decreases, especially when the carbon cap is tight. For example, when the offset price is
between $50 and $90 per ton, emissions are constant up to a carbon cap level of 4,650 tons
(similar to Figure 3.12). As the carbon cap increases, emissions also increase. Since the
facility cannot sell unused carbon credits, there is no motivation to reduce carbon emission
below the requirements set by the cap. Therefore, emission amounts gradually climb to the
levels with no carbon cap. The graphs in Figure 3.17 show the amount of carbon offset as
the carbon cap increases at two different levels of offset prices.

Figure 3.18 shows the volume shipped by each transportation mode as a function of the
carbon cap, and for different levels of carbon offset price. When the offset price is between
$20 and $40 per ton, rail ships 90%, and barge ships 10% of the total volume. Although the

level of carbon cap increases, the volume shipped using each transportation mode does not
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Carbon Offset Mechanism - Average Carbon Bought

change. This is similar to the carbon cap and trade mechanism. When the offset price is
greater than $50 per ton, barge accounts for a constant 20% of the total volume shipped and
rail accounts for 80% (for low carbon cap levels). When the cap becomes 4,650 tons, the
volume shipped by barge decreases to 10%, allowing the remaining shipments be received
by rail. This is a point in the system where the facility does not have to make major
operational changes to cope with the carbon cap. Since the facility cannot sell unused
carbon credits on the market, there is no motivation to limit emissions. We observe that
the distribution of volume shipped across different transportation modes (for high carbon
caps) has the same pattern as in a carbon cap mechanism. In summary, for small carbon
caps, this system behaves as it would under a carbon cap and trade mechanism; and for

high carbon caps, the system behaves as it would under a carbon cap mechanism.
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3.7 Conclusions

This paper proposes models that capture the impact of carbon regulatory mechanisms
such as carbon cap, carbon tax, carbon cap-and-trade, and carbon offset, on inventory re-
plenishment decisions in a biomass supply chain. In particular, we investigate the impact of
these mechanisms on supplier selection and transportation mode selection decisions. The
models proposed are extensions of the classical economic lot sizing model. We modified
the classical model to allow for multiple suppliers and transportation modes for replenish-
ing inventories. The model selects the suppliers and transportation modes based on costs
and emissions levels. Through our experimental results, we observed how existing car-
bon regulatory mechanisms affect the system’s behavior. Below we summarize our key
observations:

Observation 1: Carbon regulatory mechanisms have an impact on supplier and trans-
portation mode selection decisions. As the carbon cap decreases, the carbon tax increases,
or the market price of carbon increases, the firm tends to use local suppliers to minimize
emissions related costs. Local suppliers in such cases rely on truck transportation.

Observation 2: Under a carbon cap mechanism, we can achieve a significant decrease
in emissions through supply chain operations changes that come at a low cost. Note the
shape of the curves in Figure 3.3(a) for caps between 6,000 tons and 10,000 tons. These
curves are almost flat, indicating that changes in the carbon cap level have a small impact
on costs.

Observation 3: A carbon cap mechanism is more efficient on the supply chain oper-

ations than a carbon tax mechanism. Supply chain operations are less responsive to an
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increase in tax versus an increase in the carbon cap (see Figure 3.6 and Figure 3.10). The
smoothness of the lines in Figure 3.6 indicate a higher level of responsiveness to changes
in carbon cap level.

Observation 4: A carbon cap and trade mechanism is more efficient than a carbon off-
set mechanism. The supply chain behaves similarly under the two mechanisms when the
carbon cap is tight. However, the supply chain behaves differently under the two mecha-
nisms when the cap is loose. Under loose carbon caps, in a cap and trade mechanism, the
unused carbon units can be sold in the market at a profit. This is not the case under a carbon
offset mechanism, which punishes companies for going over the cap, but does not reward
for emissions below the cap. The shapes of the graphs in Figure 3.12 and Figure 3.16
support this observation.

Observation 5: Improvements in the fuel efficiency of transportation vehicles impact
emissions levels. Therefore, investments in improving fuel efficiency are important in re-
ducing both supply chain costs and emissions. The impacts of these improvements on
emissions and total supply chain costs are more obvious when the carbon caps are tight
(Figure 3.3), and/or the carbon tax is high (Figure 3.7). However, these improvements
should be accompanied by changes in supply chain operations. Otherwise, the increased
demand for transportation will outweigh the positive effects of technological improve-

ments.
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CHAPTER 4
MODELS FOR REPLENISHMENT DECISIONS OF PERISHABLE PRODUCTS VIA

MULTIPLE TRANSPORTATION MODES

4.1 Introduction

In this chapter we propose a mathematical model that aids inventory replenishment de-
cisions for deteriorating products, such as agricultural and dairy products, human blood,
photographic film, etc. Deterioration refers to spoilage, dryness, vaporization, etc., which
results in value lost during the storage period. These products are known as age-dependent
perishable products. Inventory replenishment decisions for perishable products are more
challenging as compared to non-perishable products. This is due to the fact that these prod-
ucts lose value with time, and consequently have a limited shelf life. Therefore, inventory
replenishment decisions are impacted not only by the tradeoffs that exist between replen-
ishment and inventory holding costs, but also by the lead time and and remaining shelf life
of perishable products.

The objective of our model is to minimize total system costs associated with replenish-
ment - related decisions. The model captures the tradeoffs that exist between transportation
lead time, time in the storage and remaining shelf-life of products; and transportation and
inventory costs. Shorter transportation lead times increase the remaining shelf life for per-

ishable products. This provides companies with more flexibility when making inventory
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replenishment decisions. For example, if the shelf life of a product is short, such as one
day, then the inventories should be replenished daily. If the shelf life of a product is longer,
then a company can reduce replenishment costs by ordering less frequently. A company
can reduce transportation lead time for perishable products by using local suppliers, or
by using transportation modes such as refrigerated trucks and refrigerated rail cars, or
airplanes. However, using suppliers located nearby could result on higher replenishment
costs, mainly due to a limited pool of suppliers than can be reached and, therefore, less
competitive prices. Using refrigerated trucks, refrigerated rail cars and airplanes results in
higher transportation costs as compared to using trucks and rail cars.

The model we propose is an extension of the classical economic lot sizing (ELS) model
with the availability of multiple suppliers and/or transportation modes for replenishment
of age-dependent perishable products. In Section 4.2, we present our network-flow based
cost minimization model (P). We also extend another network-flow based model in the
literature, by Hsu [46], to consider multiple replenishment modes. We show that the LP
relaxation of our model provides tighter lower bounds. In Section 4.3, we discuss the prop-
erties of an optimal solution. Section 4.4 considers the problem with a single replenishment
mode, and compares the performance of a dynamic programming algorithm works with a
zero inventory ordering policy to an optimal algorithm. Section 4.5 discusses a minimum
knapsack problem based dynamic programming algorithm for two available replenishment
modes. Section 4.6 presents a primal-dual based algorithm that provides tight upper and

lower bounds for the general case with multiple replenishment modes.
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4.2 Model Formulations

In this section, we formulate the economic lot sizing model with multiple replenish-

ment modes for perishable products with an objective of total cost minimization.

4.2.1 Formulation (P)

The objective of this problem is to minimize the total inventory and replenishment costs
required by a facility in order to satisfy demand for a perishable item during a planning
horizon of length 7T'. Let b; denote demand in period ¢ (t = 1,...,T).

Thereare I (: = 1, ..., I) different modes that can be used to replenish inventories. The
amount of inventory replenished in period ¢ using replenishment mode ¢ is denoted by ¢;;.
A replenishment mode in this model is characterized by a particular transportation mode
and a supplier. For example, if there are S suppliers with F' number of transportation modes
each, then the number of total replenishment modes will be [ = S * F'. The corresponding

replenishment costs are represented using a multiple-setups cost structure as follows:

Qi(qir) = 4.1

0 otherwise

[a] represents the smallest integer that is greater than or equal to a. Different from most of
the literature that uses a linear or fixed-charge cost structure, we use a non-linear, step-wise
function in order to better represent the structure of the replenishment costs as illustrated
in Figure 4.1. In Equation (4.1), p; denotes the unit replenishment cost. This cost includes
the unit procurement cost and unit transportation costs for replenishment mode 7. A fixed

cost, denoted by s;, is charged to setup an order from replenishment mode i. The number
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of cargo containers used depends on the size of the order, denoted by ¢;;, and the capacity
of the container, denoted by C);. For each unit of cargo shipped, a fixed cost is charged,

denoted by A;, to account for loading/unloading activities.

Tr. Cost(q;)

A

Figure 4.1

Multiple-Setups Cost Structure

We use two decision variables in order to model the step-wise replenishment cost func-
tion. These include y;;, a binary variable that takes the value 1 if replenishment mode 7 is
used in period ¢ and O otherwise; and z;;, an integer variable that represents the number of
cargo containers used by replenishment mode ¢ in period ¢.

In our formulation, we further divide variables ¢;; into ¢;; so that we can keep track
of the time periods that a replenishment aims to satisfy. Thus, g;; represents the amount

replenished by mode ¢ which arrives in period ¢ to satisfy demand in period 7. Using

70

www.manaraa.com



gt~ allows us to calculate the age of a product and corresponding inventory replenishment
costs. Plugging in these new variables, multiple setups cost structure in Equation (4.1)

becomes:

T

si + A [%W + Di Zfzt Qitr  if gitr > 0 for Vi, Vit

Qit(%‘tr) = (4.2)

0 otherwise

We assume that the product replenished deteriorates during transportation lead time and
storage at the facility. We assume that the product is shipped as soon as it is produced. The
transportation lead time for replenishment mode ¢, denoted by L;, depends on the location
and transportation mode used. We denote the deterioration rate for a replenishment using
mode ¢ from period ¢ that it enters the inventory to period 7 by «;;-. The deterioration rate is
not constant; instead, it depends on the duration of product storage. Typically, deterioration
rate increases with time, and thus, o, < aijforl <t <7 <5 <T.

Let k;;; represent the percentage of inventory from replenishment mode ¢ that arrives in
period ¢ that has not perished until it is used in period [. The order of this replenishment is
made at time ¢ — L; to count for the transportation lead time. If transportation lead time is
assumed to be zero, a replenishment in time period ¢ for the same time period is received
without a loss. This means that a;;; = 0 and 100% of the replenishment is delivered.
Thus, we define k;;; = 1. The remaining k;; for 1 < ¢t < [ < T are calculated as:
kiy = Hé;}:(l — «;;;). Based on the assumption stated above, we can see that k;; < ki
forl1 <t<r<[I<T.

When transportation lead time is greater than zero, k;; is not necessarily equal to 1.

The replenishment starts deteriorating from time period ¢ — L; in which it is ordered. This
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value can be negative in terms of our notation as ¢ starts from 1, and L; can be any positive
number. So we adjustitast— L; = 1, which implies that time period ¢ will be the (L;+1)""
time period. The replenishment arrives at time period ¢ will already be L; periods old. In
this case, k;;(r,+1) denotes the remaining percentage after the transportation lead time,i.e.
Kie = kil(Li+1) = H]L;(l - Oéilj)-

The remaining k;; values will depend on the value of k;;(z,.1) (equivalently k;;;) as

follows:
I—t+L;
kin = ki ] (11— any) (4.3)
j=L;+1

Thus, in our formulation, any k;;; value already contains the information for the deteri-
oration during both the transportation lead time and storage in the facility.

Inventory holding costs are due to using the storage area, and using refrigerated stor-
age. It also captures the lost opportunity of using the money invested in the inventory. Let
h; denote the unit inventory holding cost, and H; denote the amount of inventory in the end
of period t. We expect inventory holding costs to change with time due to,among others,
fluctuations in the price and consumption of electricity. Letting H;(g;;,) denote the inven-
tory holding cost function in period ¢, then H;(g;1-) = hy > le 2221 Zf:t +1 KistQisr- The
cost associated with each g;;, is denoted by c;;-. This parameter includes the replenish-

ment cost at period ¢, in-transit inventory holding cost for the lead time of L; and the total

inventory holding until period 7. It is defined as ¢;;, = p; + Z;tl hokits.
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The formulation of the lot-sizing problem with multi-mode replenishment and age-

dependent perishable inventories is the following:

1 T T

minimize z = Z Z Z CitrQitr + Sl + Aizit 4.4)

i=1 t=1 [L7=t

1 T
Subjectto Y Y kirqr = b,  1<7<T (4.5)
=1 t=1
bs .
Gitr — - Yir < 0 i=1,2,...,1<t<7<T (4.6)
itT

IN
o

T
> qir — Cizi i=1,2,..., L;t=1,2,....,T (47)
T=t

ye € {0,1} i=1,2... Lt=12....T (4.8)

e € 2T i=1,2,....;t=1,2,....T (4.9

v
S
.

Il
—_
0o

itr L1 <t<7<T (4.10)

Constraints (4.5) ensure that demand in period 7 (7 = 1,...,7) is satisfied. In this con-
straint the term k;,. captures product deterioration during both transportation lead time and
storage. Constraints (4.6) relate the continuous variables ¢;;; to the binary variables v;;.
When y;; = 0, this implies no replenishment of inventories in period ¢, as a consequence
Gitr = O0for 7 =t,...,T. Constraints (4.5) and (4.6) indicate that replenishment amounts
should be larger than the actual demand to compensate for the loss of inventory due to
deterioration. Constraints (4.7) identify the number of units of cargo required to replenish
inventories from replenishment mode 7 in period ¢. Constraints (4.8), (4.9) and (4.10) are,
respectively, the binary, integrality and non-negativity constraints.

Figure 4.2 gives a network representation of Formulation (P) with 2 replenishment

modes and 3 periods. This network contains one dummy node for total supply, 7" nodes
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Figure 4.2

Network Representation for a 2-mode, 3-period Problem (P)

for the facility at each time period, and a total of I * T replenishment nodes each of which
represent a replenishment mode ¢ in every time period ¢. In each time period ¢, the facility
has a demand equal to b;. Replenishment arcs connect replenishment nodes with the facility
in each time period. The amount of flow on these arcs (g;;,) represent the amount shipped

using replenishment mode 7 that arrives in time period ¢ for time period 7.

4.2.2 Formulation (Q)

Hsu [46] provides the ELS model with age dependent perishable inventories and a
single mode of transportation. Different from our model, Hsu [46]’s model assumes a
fixed charge cost function and another network structure. In this section, we show how our
problem with multiple replenishment modes and a multiple setups costs structure would be
represented using the network model proposed by Hsu [46]. We refer to this as Formulation
(Q). In this formulation, we assume that L; = 0. Figure 4.3 gives a network representation

of Formulation (Q) with 2 replenishment modes and 3 time periods.
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The decision variables used in formulation (Q) are: g;; represents the amount replen-
ished in period ¢ using mode %; 7;;, represents the amount of demand in period 7 satisfied
from a replenishment made in period ¢ using mode 7; H;;, represents the amount of inven-
tory in the end of period 7 from a replenishment received in period ¢ using mode 7; y;; is
a binary variable that takes the value 1 if replenishment mode 7 is used in period ¢ and 0
otherwise; z;; represents the number of cargo containers used by replenishment mode 7 in

period ¢. We use the same parameters that have been defined for Formulation (P).

Figure 4.3

Network Representation for a 2-mode, 3-period Problem (Q)
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In this formulation, constraints (4.12), (4.13), (4.14) and (4.15) are the flow conserva-
tion constraints. Constraints (4.16) show that the replenished amount cannot be larger than

cargo capacity. Constraints (4.17), (4.18) and (4.19) are respectively the binary, integrity

Formulation (P) and Formulation (Q) are two different models that represent the same
problem with two different network structures. We selected the network structure proposed
by Hsu [46] as their study has provided high quality solutions for a special case of Formula-
tion (Q). Hsu [46] considers a fixed charge cost structure and a single replenishment mode
and proposes a dynamic programming algorithm that runs in O(T*). For this reason, we

also use a fixed charge cost structure in both formulations for a fair comparison. Thus, this
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special case corresponds to using multiple modes of replenishment with no capacity limits
under a fixed charge cost structure.

We take the LP relaxations of both models for this special case. We show that the LP
relaxation of Formulation (P) provides solutions with zero integrality gap. Therefore it is
a tighter formulation than Formulation (Q). The LP relaxation of Formulation (Q) is not
very tight due to constraints (4.15). In the LP relaxation of (Q), y;; variables represents the

fraction of demand from period ¢ to 7' that is satisfied by a replenishment mode 7 at time

T b,
T=t kitr

period t. So the sum of all demands from period ¢ to 7" (D ) is a very high upper

bound. In Formulation (P), this upper bound is only the demand for a single time period,

by

1.€. Teir

in constraints (4.7). Using a numerical analysis, we also compare the performance

of both formulations in terms of their running times.

4.2.3 Comparison of LP Relaxations of (P) and (Q)
4.2.3.1 Optimality Gap

In this section, we compare the performance of Formulations (P) and (Q) in terms of
the lower bounds obtained by their LP relaxations and their running times in CPLEX. In
particular, we show in Theorem 4.1 that under a fixed charge cost structure, LP relaxation
of Formulation (P) is solved to zero integrality gap. In our numerical analysis, our experi-
ments showed that the LP relaxation of Formulation (Q) does not provide a zero optimality
gap. Using the data in the following example for comparison of running times, LP relax-
ation of Formulation (Q) provided us solutions within at least 5% of the optimal solution.

Thus, our test results also demonstrated the value of the tighter formulation (P).
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4.23.1.1 Theorem 4.1
Assuming no cargo capacities and fixed charge replenishment costs, the LP relaxation
of Formulation (P) provides solutions with zero integrality gap.

For this special case, we obtain Formulation (P’):

I T [T
minimize z = Z Z [Z CitrQitr + SiVit (4.20)
i=1 t=1 | 7=t
I T
Subjectto » " KirGitr = br 1<r<T (4.5)
i=1 t=1
b, .
Gitr — 7Yt <0 Vi;1<t<7<T (4.6)
itT
v € {0,1} Vi;t=1,2,...,T (4.8)
Qitr > 0 Vi;1<t<7<T (4.10)
Defining x;;; = qitr/b- and ¢ = cy.b, foralli, t =1,..., T, 7 =1t,...,T, we can
write Formulation (P’) as
T[T
minimize z = Y ) [Z Citr Titr + SiVit 4.21)
i=1 t=1 | 7=t
I T
Subjectto » > " kiraiy = 1 1<7<T (4.22)
i=1 t=1
1 .
Titr = 3—Yit <0 Vi;1<t<7<T (4.23)
itT
yie € {0,1} Vi;t=1,2,...,T (4.8)
Tigr > 0 Vi;1<t<7<T (4.10)
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Let A\, denote a Lagrangian multiplier associated with (4.23) and consider the La-
grangian relaxation in which each of these constraints is relaxed. This Lagrangian relax-
ation can be written as

1 T T T )\
LR =min > Y [ (Gur + Aier) Titr + (si = ﬁ) yit] (4.24)
=t 7

i=1 t=1 L7=t

I T

Subjectto » > kiraipy = 1 1<7<T (4.22)
=1 t=1

v € {0,1} Viit=1,2,...,T (4.8)

Titr > 0 Vi;1<t<7<T (4.10)

For a given vector )\, we can solve the above relaxation as follows. For each ¢, t pair,

if s; — ZT i < (), set y; = 1; otherwise set 3;; = 0. Let IT()\) denote the set

T=t kit‘r

of all 4,¢ pairs such that y; = 1. For 7 = 1,...,T, let ®(r,\) denote the set of all

1,t pairs with ¢ < 7 such that C“T;& is minimized. If some ¢,¢ pair exists such that

(1,t) € {IT'(A\) N ®(1, \)}, then for the element in this set with the biggest value of ¢, set
Tyt = 1/ky,. For the given value of 7, set x;,, = 0 for all other (i, t) pairs. If no element
exists in {IT(\) N ®(7, \)}, then choose any (i,t) € ®(7, \) and set ;. = 1/k;t,. Again
for the given value of 7, then set x;;,, = 0 for all other (¢, t) pairs. Note that this solution is
optimal for LR(\).

Since Lagrangian relaxation value satisfies the integrality property, the optimal La-
grangian dual value will equal the LP relaxation of the original formulation. Let A* denote

the vector that maximizes the Lagrangian dual objective, and let (\*) and y(\*) denote

the corresponding solution in the = and y vectors for the Lagrangian relaxation problem at
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A* as constructed above. If z(A*) and y(\*) are feasible for the original problem, this solu-
tion is optimal for the original problem. This is because the Lagrangian relaxation problem
provides a lower bound on the optimal solution for the original problem. In particular, this
implies we have found an integer feasible solution whose objective function value equals
the optimal objective function value for the LP relaxation of the original problem.

Next suppose that 2:(A\*) and y(\*) are not feasible for the original problem. Then by
construction of the solution, this implies that there exists a triplet (i, £, 7) such that 2. =
1/k;;- and y;; = 0. We also know by construction that y;; = 0 for all (i,t) € ®(7, \*).

This implies that s; — ZT Albr

T=t kit‘r

> 0 for all (i,t) € (7, \*). We can obtain a new vector

A by increasing \;;, by some e > 0 for each (7, t) € ®(7, \*) and leaving all other X values

T >\it7‘
T=t kitT ’

unchanged. For a sufficiently small ¢ > 0, the coefficient of y;; in LR()\),i.e. s;—)
remains positive for all (i, ¢) pairs for which this sign was positive in our original solution
(thus y(A\*) = y(X\)). In addition, for sufficiently small € we have ®(7,\) = &(F, \*)
and, therefore, z:(\) = x(\*). However, because of the increase in the value of ) for all
(i,t) € ®(7, \*), this implies that the Lagrangian dual solution at ) is strictly greater than
the Lagrangian dual objective at \*, which contradicts the optimality of \* for the dual
objective. Thus, if we have an optimal dual solution \*, there does not exist any triplet

(1,,7) such that z;;

itT

= 1/k;

itT

and y;; = 0, and the Lagrangian relaxation solution at the

optimal value of A\ must be feasible for the original problem.
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4.2.3.2 Running times
In the following example, we compare both formulations in terms of their running

times.

Table 4.1

Problem Parameters for LP Relaxations

Tr.Mode S; i
1 U[100,200] | U[30,40]
2 U[200,300] | U[25,35]
3 U[300,400] | U[20,25]

Table 4.1 presents the input data for comparison. We consider 12 problems with the
number of replenishment modes (/) and time periods (7°) as shown in Table 4.2. For each
problem, we assume equal numbers of different transportation modes. For example, [ = 3

contains one from each type of transportation modes whereas / = 15 contains five of each.

Table 4.2

Problem Characteristics for LP Relaxations

Prob|I| T ||Prob |l | T |Prob| I | T
1 3| 25 5 6| 25 9 15| 25
2 31 50 6 |6 50 10 | 15| 50
3 3175 7 6| 75 11 | 15| 75
4 31100 8 6100 12 | 15| 100
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We generate demand per time period following a uniform distribution U[100, 200].
Holding cost is assumed to be A = $1/(unit*time period). For each problem, we also
create 10 cases for different deterioration rates per time period. We analyze deterioration
rates between 0.01 to 0.10 per time period in increments of 0.01. For each problem and
deterioration rate, we generate 10 test instances and report on the average running times
and error gaps. Table 4.3 shows the running times of both formulations in CPLEX for three
different deterioration rates per time period (o = 0.01,0.05,0.10). For all of the problems
using different deterioration rates, Formulation (Q) has longer running times compared to

Formulation (P).

Table 4.3

CPU Running times (in sec) for (P) and (Q)

a=0.01 \ a =0.05 a =0.10
Prob Q P Prob Q P Prob Q P
1 100720012 1 [0.088]0013| 1 |0.053]0.012
2 102780039 2 [0278|0.123| 2 |0.288|0.106
3 10708 0245 3 [0553|0.175| 3 |0451]0.175
4 [ 11530322 4 |1.113]0280 | 4 |1.353)0.280
5 [0150[0.063| 5 [0.153]0.083 | 5 |[0.147[0.075
6 | 0564|0178 | 6 |0.494|0.158 | 6 |0.451|0.158
7 | 1446|0322 7 |1.094]0319| 7 |[0.7720.336
8 |2725]0570 | 8 |2.2890602| 8 |1.672]0.559
9 [0202]0.141 9 [0205|0.103] 9 [0.1890.134
10 | 0.953 | 0.363 || 10 | 0.855]0.392 | 10 |0.886 | 0.372
11 25720786 | 11 |2276|0.810 | 11 |2.030 | 1.027
12 | 6757 | 1.808 | 12 |5.280 | 1.975 | 12 | 4.230 | 1.858
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4.3 Properties of an Optimal Solution

We make use of the following definitions that are also used commonly in the literature
when we demonstrate the properties of the optimal solution. Period ¢ is an order period
ifg > 0. In(P), ¢ = 25:1 Zfzt Git~- Period t is a regeneration period if I; = 0. The
interval between two consecutive regeneration points, 7 and y is a regeneration interval.
InP), I[,_; = Zle Zi:l kistqise. We define ¢;; as a Full-Truck-Load (FTL) shipment
if ¢;; = nC); for some positive integer n; otherwise, it is a Less-than-Truck Load (LTL)
shipment. ¢, > 0 is called a full order if g;; is either zero or an FTL shipment for all
1 =1,...,1;otherwise it is called a partial order.

The following properties have been proposed for the ELS problem with multi-mode
replenishments for non-perishable products. We show that they hold for our problem with

perishable products.

4.3.1 Property 4.1

If periods T — 1 and ~y are two consecutive regeneration points, there exists an optimal
solution such that there is at most one partial order between periods T and ~y. (Adapted
from Jaruphongsa et al. [59])

Let an optimal solution contain two partial order periods, x and y (z < y) between
two consecutive regeneration periods 7 — 1 and . The quantities shipped at these time
periods are g,,, and ¢,, using modes m and n respectively. Let p; denote the total of the
unit replenishment cost and unit cost for in-transit inventory for a replenishment mode .

There are two possible cases to consider:
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1. If p,, + Zy " hokizs < pn, then we can increase ¢, by min{ [ ¢mz/Cn] Cn
Umas Gryknyy/ k:mxy} and decrease ¢y, by this minimum amount times Ky,uy/Knyy-
After this change, either ¢,, = 0 or g, is an FTL replenishment. Since p,, +
Zy 'h skizs < pn, and the number of cargo containers do not increase, total costs
will not increase. Thus, we obtain a solution whose cost is less than the cost of the
optimal solution. This is a contradiction.

2. I p + >0, ' hekizs > pn, then we can increase qny by min {[q,,/Cy] C, —
Uny; Gma mzy/knyya I km(w+1)y/k7nyyv Loyikom m+2 y/knyy, ooy Iy 1kmyy /oy, } and de-
crease ¢, by this minimum amount times k . After thls change, there are three
possible cases: ¢, = 0; gy, 1s an FTL replemshment, or a regeneration point is cre-
ated between x and y, and as a result g,,,,, and ¢,,,, become LTL shipments that belong
to two different regeneration intervals. In all of the cases, replenishment costs will
not increase as p,, + Zy 'h skizs > pn. Number of cargo containers will either stay
the same or decrease. Therefore, total costs will decrease and we obtain an optimal
solution with lower costs, which creates a contradiction.

Thus, it is not possible for any two periods between two consecutive regeneration points

to carry partial orders.

4.3.2 Property 4.2

There exists an optimal solution suchthatq; > 0 (t = 1,...,T) if and only ifz:i[:1 Zi;lT
kistQist < by where 1 — 1 (0 < 7 <t < T) is the latest regeneration point.

This property states that inventories are replenished in period ¢ if the inventory in the
beginning of this period, I;_;, is not enough to satisfy demand. Constraints (4.5) state
that Zle Zizl kistqiss = b We can rearrange this constraint separating the current pe-
riod’s replenishment from the inventory: ZZ 1 Zt ! kistQist + Zfil kittqie = by Let
Ti, Ty ooy Tny (0 <1 < o0 < 7, < 1) be n regeneration points prior to time ¢. That
implies Zz 1(21 ' KistQist + > - Ti istQist T -« T Zz:ﬂl Kistdist) + Zle KittQire = Dy

Thus, we obtain ZZ ) ZS T KistQist + Zfil KitsQite = by.
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It is clear that if Zfil Zi;lT kistQist < by, then Zfil kittqice > 0, i.e. there will
be a replenishment in period ¢. Suppose that there exists an optimal solution such that
Zle Zi;lm kistGist > by and Zle kit+qive > 0. The quantity shipped in period ¢ will incur
a replenishment cost of Zfil cittqir+ and an inventory holding cost of carrying the quantity
for at least one time period, which is Zle hikit+qie. In this one period, the quantity of
Zfil ki qire Will decrease to ZZ'I:1 Kit(t+1)qits- We can delay this replenishment order from
period ¢ to ¢t + 1 without changing the replenishment mode in period ¢ + 1. In this case,
deterioration in one time period will be avoided. The replenishment costs will be the same
but the holding cost will be saved. Thus, we will obtain another optimal solution with

lower costs, which is a contradiction.

4.4 Special Case: Single Replenishment Mode

In this section, we consider the special case where only one replenishment mode is
available. As there is a single mode with the same transportation lead time, we assume that
L; = 0 without loss of generality.

Hsu [46] considers the economic lot sizing model for perishable products with the
availability of a single replenishment mode and fixed charge cost structure. Our model
reduces to this special case if there were no cargo capacity considerations. Hsu [46] defines

the following property for this model.

4.4.1 Proposition 4.1
Assume no cargo capacities and fixed charge replenishment costs. Let 1 < 7 <

Ty < ... < T, < T be the indices for the N production periods in the optimal solution.
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Suppose also that there are N+1 indices 1 < 7 < 75 < ... < Y41 =1+ 1. For each s
(1 < s < N) 75 <, and production in 7, satisfies demand in periods s through s, 1 — 1.
(From Hsu [46])

This proposition defines Consecutive Cover Ordering (CCO) property which states that
an order covers the total demand for a number of consecutive periods. Unlike the Zero
Inventory Ordering property, the inventory is not required to be zero at the time of the order.
However, an order that takes place when there is available inventory is not used at the same
time period. It is saved until the consecutive time periods that it is targeted to replenish.
Thus, there is no splitting between production and inventory for the replenishments in any
time periods.

Proposition 4.1, however, does not hold when cargo capacities and associated costs are
taken into consideration as the demand of a time period may be satisfied via replenishments
in the same time period and/or from a number of previous time periods. We illustrate this
with an example. Suppose that {d;, ds,d3} = {135,200,509}, A; = 80,81 = 50,p; =
2,07 = 50,hy = 1. Letagy = 0,014441 = 02,01 4440 = 025 for 1 <t < T =
3. Then we obtain ki = 0, kiy41) = 0.8, k14i42) = 0.6. The optimal solution sets
G111 = 135, q112 = 15,q120 = 188, qua3 = 11.25,¢133 = 500, with an optimal cost of
3234.75. According to Property 4.1, each of demands in periods 2 and 3 should have been
satisfied by single orders. However, ¢;12 > 0 and ¢122 > 0 in the optimal solution, as
well as qi23 > 0 and ¢33 > 0. Thus, the demand of a period can be both satisfied from

replenishment and inventory.
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With the multiple setups cost structure, an order in an optimal solution also does not
necessarily have to be a combination of replenishments for consecutive time periods. This
is a result of the relationship between deterioration rates. We again illustrate this with an
example. In the previous example, we assumed that oy ;¢ = 0,1 1041 = 0.2, 14442 =
0.25 for all values of t. However, depending on the time period ¢, these values may differ.
For example, let v; 2 3 = 0.3 and keep the remaining values same for the previous problem.
Then ky;; = 1 forallt < 3, ky10 = 0.8, k113 = 0.6 and k103 = 0.7. In this case, the optimal
solution sets q111 = 135, 113 = 15, 120 = 200, q133 = 500, with an optimal cost of 3237.
In the solution ¢11; > 0 and ¢35 > 0 whereas q;10 = 0. A sequential flow would not let
q113 have a positive value unless ¢;12 > 0. Thus, an optimal solution for our model can
contain non-sequential flows.

The following properties hold for our model for perishable products with a single re-
plenishment mode and a multiple setups cost structure. In our model, unit replenishment
costs p; are not a function of the time period. Thus, it complies with the nonspeculative
cost structure as p; 1 = p;. Cargo costs A; for (: = 1...1) are also independent of the time
period. Since ¢ = 1, the stationary cargo cost is equal to A in every time period. Similarly,
we omit the 7 indices for the rest of the notation in the single mode problem. Parame-
ters s, p and C' represent the fixed setup cost, unit replenishment cost and cargo capacity
respectively. ¢ is the amount of replenishment in time period ¢, and k,, represents the
percentage inventory remaining at period y for a replenishment that arrives in period z. ¢,
denotes the total replenishment and inventory cost of a replenishment arrives in period x

to satisfy the demand in period y.
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4.4.2 Property 4.3

Let 7 — 1 and vy be two consecutive regeneration points. Under a nonspeculative cost
structure, if there is a LTL shipment between periods T and v, it occurs in the first period,
7. (Adapted from Hwang [50] and Jaruphongsa et al. [59])

Consider Case 2 in Property 4.1 as nonspeculative costs fall into this category. Let x
and y (z < y) be two LTL shipment periods in a regeneration interval (7 — 1, ). Suppose
¢ and g, are the quantities shipped by a single mode at these time periods. We can increase
qy by min {[q,/C'| C — qy, @ukay, Iok(z+1)ys Lot1K(@+2)ys - - - » Iy—1} and decrease ¢, by this
minimum amount times 1/k,,,.

1. If the first term is selected, i.e. min = {%ﬂ C — gy, then the amount of decrease in
qy

Qe 18 Ay = ((5W C — qy) k. After this change, g, becomes an FTL shipment
whereas ¢, is an LTL shipment. Number of cargo containers do not change. Total

inventory holding costs are decreased by Zf:_; hikgt A gy

2. Selection of second term depletes g,.. With this change, setup and cargo costs at time
x are avoided. Decrease in the inventory holding costs is Zi’:—; hik:q.. In this case,
¢y, may be an FTL or an LTL shipment.

3. If terms with the inventory are selected, a new regeneration point is created between
periods x and y. In this case, ¢, and g, become the first ordering periods of two con-
secutive regeneration intervals. They can both be LTL or FTL shipments. Number of
containers will stay the same; however, inventory holding cost of the selected term
will be saved.

In all of the cases, a solution is obtained that has a lower cost than the optimal solution,
which is a contradiction to optimality. The same procedure can be applied to all possible
regeneration intervals. In the optimal solution, if there has to be an LTL shipment, it will

only occur in the first period of a regeneration interval.
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4.4.3 Property 4.4

In an optimal solution, each FTL shipment period t between any two consecutive re-
generation points T — 1 and v satisfies 1,1 < min{b;, C'}. (Adapted from Lee [64])

Let I, ; > min{b;, C'} in an optimal solution for an FTL replenishment period t.
Property 4.2 states that a replenishment can only take place when I, ; < b;. To satisfy
both inequalities stated above, i.e. min{b;, C'} < I, 1 < b;, we should have min{b;, C'} =
C'. Let = be the last replenishment period before ¢, (x < t). Suppose ¢, and ¢; are the
replenishments in these two periods. To obtain /,_; > C, we must have [, = (¢, + [,—1 —
by) > C/ky. Weknow that I, 1 < b,. It follows that g, > (C'/kyy)+by— 1,1 > (C/ky).
In this case, we can decrease ¢, by [%Tkﬂ (C/ky)—(C/ky) and increase ¢; by (%ﬂ Cc-C.
In the new solution, we will still have ¢, > (C/k,;) and less total costs due to decreased
holding costs. This contradicts the optimality of the initial solution.

We are only interested in the solutions that satisfy Properties (4.1) - (4.4) . We observed
through examples that demand of a time period can be satisfied with inventory from a
previous period and an FTL replenishment in the same time period. Thus, Zero Inventory
Ordering property does not hold for our model. As the model is easier to solve with a
Zero Inventory Ordering policy, we provide a dynamic programming algorithm using this
policy in Section 4.4.4 as our first solution approach. In Section 4.4.5 we propose another
a dynamic programming model that considers multiple setups cost structure which we

updated from Hwang [50] to consider age-dependent perishable inventory. We analyze the

error gap between these two dynamic programming algorithms and the optimal solution.
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We compare the running times of both algorithms and show that a zero inventory ordering

policy can provide quality solutions with small error gaps.

4.4.4 Dynamic Programming Algorithm for Zero Inventory Ordering Policy

In this section, we present a dynamic programming algorithm that works under a zero
inventory ordering policy. This policy requires an order to be placed at time period ¢ only
when [;_; = 0. Also, demand of a period cannot be supplied from both replenishment in
period ¢ and and inventory from period ¢ — 1.

If a replenishment schedule exists such that if period ¢ is a replenishment period, the
corresponding replenishment quantity equals b, , = Z;;; (by/kty) forsomet < 17 < T+1
where 1 < t < T. 7 represents the next replenishment period after period ¢. We use the
dummy period 1" + 1. This period does not represent a replenishment period and there is
no demand in this period. A flow from from period 7" to 7" + 1 represents a replenishment
in period 7" to satisfy demand in 7" + 1.

The number of cargo containers for the replenishment in period ¢ equals M, = [b; . /C'].
The cost associated with satisfying demand from period ¢ through 7 — 1 is denoted by

f(t, ) and equals:

bs
ftm)=s+) ¢y + AMyr (4.25)

We create an acyclic network where each f(t,7) represents an arc cost on the graph
and we solve the shortest path problem to find the optimal solution. We create a graph G,
as shown in Figure 4.4. T'+1 nodes are included in (G one for each of the 7" time periods in

addition to the dummy node 7"+ 1. Each arc (¢, 7) in G represents a shipment that satisfies
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demands from ¢ through 7 — 1. The cost of each arc (¢, 7) is equal to f(¢, 7). The dynamic

programming algorithm finds the shortest path from node 1 to 7" 4 1 in graph G.

Figure 4.4

Network Representation for Dynamic Programming Algorithm (7" = 4)

A solution under a zero ordering policy does not allow any replenishments when there
is inventory available. Thus, a replenishment only takes place when the inventory level is
zero and has to satisfy the demands of some consecutive demand periods. This implies that
only one replenishment can take place between any two regeneration points. An optimal
solution to the original problem allows FTL replenishments in a regeneration interval even
if inventory level is greater than zero. So an optimal solution arranges FTL shipments to
capture the tradeoffs between the cargo and inventory holding costs in every regeneration
interval. However, under zero inventory ordering policy, number of containers is set de-
pending on the total demand for every regeneration interval. Inventory holding costs and
potentially cargo costs are higher since the replenishment at the beginning of the regener-

ation interval has to carry more than the required amounts considering the deterioration.
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4.4.5 Dynamic Programming Algorithm for Multiple Setups Cost Structure

Hwang [50] proposes a dynamic programming algorithm to find the optimal solution
for the problem with a single replenishment mode, stationary cargo costs and a nonspec-
ulative cost structure. We propose a dynamic programming based heuristic by modify-
ing this algorithm to consider age-dependent perishable inventories. The solutions found
using this procedure satisfy Properties (4.1) - (4.4). We again assume ¢t — 1 and 7 — 1
(1 <t <7 <T+1)betwo consecutive regeneration points. Let the (¢,7) problem be
finding the minimum cost (denoted by f(t, 7)) of satisfying total demand from period ¢
through 7 — 1. Once all f(¢, 7) values are determined, the shortest path on Figure 4.4 finds
the minimum solution to the model.

Finding f (¢, 7) values are more challenging in this case, as there may be FTL shipments
within the (¢, 7) problem. As Property 4.3 states, if an LTL shipment exists, it can only
occur in period ¢ in a (¢, 7) problem. It implies that for some m (¢t < m < 7) to period 7,
only FTL shipments exist. Let g(m, 7) be the minimum cost of (m, 7) problem using only
FTL shipments. Thus, f(¢, 7) is calculated as a function of g(m, 7). It calculates the min-
imum cost of satisfying the demand in (¢, 7) problem with a possible LTL shipment only
in period ¢ and FTL shipments in the remaining periods. The procedure uses a backward
dynamic programming approach. Thus, initially the scheduling of the FTL shipments are
made in (m, 7) problem such that g(m, 7) is minimized. Then, this schedule determines
the inventory that should be carried from period m — 1 to satisfy the total demand in the
(m, 7) problem. However, due to perishability, timing of the last replenishment before

period m and the level of inventory that is carried to this period affects the ordering of the
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FTL shipments in any (m, 7) problem of an optimal solution. This means comparing all
possible schedules of FTL shipments within any (m, 7) problem for every (¢, 7) problem.
However, this is a time consuming process with enumerating all solutions. Our procedure,
instead, determines a minimum cost FTL replenishment schedule for every (m, 1) prob-
lem. Thus, this procedure does not capture all of the possible solutions. However, through
numerical analysis, we show that it finds the optimal solution with a very high percentage.
We use the following notation to be used in the algorithm. We denote total demand in a
(t,7) problem at time period ¢ by b; , = Z;;; (by/kiy) forsome 1 <t <7 <T +1. Let
u(z) = [x/CC represent the maximum number of items that can be shipped using total
number of cargo containers required to carry x. Similarly, let u(x) = |z/C]|C represent
the number of items that can be shipped in FTL cargo containers needed to carry x.
h(bi+1,-) represents holding cost to meet the demand in periods ¢ + 1 through 7 — 1

using a replenishment that was received in period ¢. Thus,

T—1
h(besr,r) = Zh ki (Z b—) (4.26)

Jj=i+1 tj
Similarly, for a replenishment received in ¢, h(bs+1 » — u(b, ;) represents holding cost
of required amount between periods ¢ + 1 to y given that there are only FTL shipments to

cover the demand from periods v through 7 — 1.

h(biy1,r — ulbyr)) = z_: ik [( z_: 2—]) + (bw—k—u(bw)>] 4.27)

j=it1 " by
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The dynamic programming algorithm reads as follows:
(

s+ (2 + p)u(bmr) + h(bmiir),

glm,7) =minq | 54 (4 +pu (bm,T - %) +9(7,7)+ (4.28)
min
h(bpy1- —u(bys)) 1<m<y<7<T+1

;

s+ Au(byr) + pber + h(bgrr),

( )

ot i (b — 1) 1 p [, — )] ¢

f(t,7) = min ¢ (4.29)

min g(v,7) + h(bt+1,r - u(b%T))

1<t<y<7<T+1; b,,>C

\ \ 7

where g(m, 7) and f(¢,7) are definedin (1 <t <m <7 <T+1).

In the calculation of g(m, 7), the first term is the cost of a single FTL shipment at time
period m to satisfy the demand between m and 7 — 1; i.e. no other FTL replenishments
occur between m and 7 — 1. The second term finds the minimum cost of the possible
replenishment schedules such that cost of an FTL shipment at time period m supported by
FTL shipments in some periods 7y (m < 7).

If the minimum value assigned to g(m, 7) comes from this second term, it means that

another set of FTL shipments (g(-y, 7)) start at period +. Then, u(b,, ) should be adjusted

for the next iterations. It becomes: u(b,, ;) = u (bm,r — “g:j) + ugcbm”:).

A similar structure exists in the calculation of f(¢, 7). The first term calculates the cost
of the case where all of the demand is satisfied by an LTL shipment in the first period
of the (¢, 7) problem. The second term finds the minimum cost of the possible schedules

such that there is an LTL shipment in the first period of the (¢, 7) problem and the rest are

satisfied by FTL shipments.
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4.4.6 Numerical Study

In this section we compare the results of both dynamic algorithms with the optimal
solutions obtained by CPLEX with respect to the error gap and the running times. For
this problem, we use three demand levels for low, medium and high demand. We also
capture the impact of cargo capacities, by checking a small and a large size container size.

Table 4.4 presents the input data for the problems generated.

Table 4.4

Problem Parameters for Single Mode Problem

Low: U[100,300]
by Med:U[300,700]
High: U[700,1000]

5 U[200,300]
A U[50,75]
P U[30,50]
C Small: 50
Large: 100

Holding cost is h = $1/(unit*time period). We consider 28 problems with the num-
ber of time periods (7°) and the cargo capacity of the replenishment mode as shown in
Table 4.5.

We run experiments for each problem changing the demand levels and deterioration
rates for each time period. We tested for deterioration rates of 0.01, 0.02 and 0.03 per time
period. For each problem, we generate 10 instances and report the average running times

and error gaps. In the following tables, we refer to the dynamic programming algorithm
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Table 4.5

Problem Characteristics for Single Mode Problem

Cap Cap

T |50 | 100 (| T | 50 | 100
10| P1 [ P15 | 80 | P8 | P22
20| P2 | P16 | 90 | P9 | P23
30 | P3 | P17 || 100 | P10 | P24
40 | P4 | P18 | 110 | P11 | P25
50| P5 | P19 || 120 | P12 | P26
60 | P6 | P20 || 130 | P13 | P27
70 | P7 | P21 | 140 | P14 | P28

with zero inventory ordering policy as Zero and the algorithm with multiple setups cost
structure as MSetup.

Table 4.6 shows the running time of the CPLEX and our two dynamic programming
algorithms for Problems 1 to 14 under a low demand per time period. In this problem
setting, the deterioration rate per time period is 0.01. Compared to the CPLEX running
time both algorithms perform very fast. Dynamic programming algorithm for multiple
setups is slower than the one with zero inventory ordering policy. The quality of the so-
lutions obtained by both algorithms under a low demand is shown in Table 4.7. Although
the error gap does not exceed 0.12% for zero inventory policy, multiple setups dynamic
programming algorithm provides solutions more closer to the optimal solution.

The running times for medium and high demands are shown in Table 4.8 and Table 4.9.
We only provide the results for the problems that CPLEX could find an optimal solution.

For all demand levels, both of the algorithms find very close to optimal solutions in a
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Table 4.6

Running times (in sec) - Low Demand - o = 0.01

CPLEX | Zero | MSetup

P1 | 0.014 0 0
P2 | 0.050 0 0
P3 | 0.299 0 0

P4 | 0.813 | 0.002 | 0.003
PS5 | 2.442 0 0.005
P6 | 3.131 0 0.008
P7 | 6375 0 0.014
P8 | 9.720 | 0.002 | 0.020
P9 | 12.620 0 0.030
P10 | 78.817 0 0.041
P11 | 146.108 | 0.002 | 0.053
P12 | 306.366 | 0.000 | 0.072
P13 | 283.019 | 0.003 | 0.089
P14 | 595.661 | 0.003 | 0.120

Table 4.7

Error Gaps (in %) - Low Demand - o = 0.01

CPLEX | Zero | MSetup
P1 0 0.089 | 0.013
P2 0 0.086 | 0.009
P3 0 0.101 | 0.013
P4 0 0.098 | 0.014
P5 0 0.106 | 0.011
P6 0 0.100 | 0.013
P7 0 0.107 | 0.014
P8 0 0.093 | 0.011
P9 0 0.087 | 0.012
P10 0 0.083 | 0.008
P11 | 0.0002 | 0.110 | 0.013
P12 | 0.0011 | 0.092 | 0.012
P13 | 0.0014 | 0.111 | 0.012
P14 | 0.0031 | 0.116 | 0.016
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significantly short period of time. The quality of these solutions are provided in Table 4.10

and Table 4.11.

Running times (in sec) - Med Demand - o« = 0.01

Table 4.8

CPLEX | Zero | MSetup
P1 0.011 0 0
P2 | 0.033 0 0
P3 0.091 0 0.002
P4 | 0.266 0 0.003
P5 1.230 0 0.005
P6 1.983 0 0.008
P7 3.523 0 0.013
P8 8.550 0 0.020
P9 | 4.874 0 0.028
P10 | 6.025 0 0.041
P11 | 29411 0 0.053
P12 | 20.281 | 0.002 | 0.072
P13 | 71.134 | 0.003 | 0.091
P14 | 138.822 | 0.003 | 0.119

In Problems 15 to 28, we analyze the impact of large cargo capacities on the perfor-

mance of the algorithms. Table 4.12 and Table 4.13 show the running times and the error

gaps respectively for these problems. Both algorithms provide solutions within a maximum

of 0.08% error gap within very small time frames.

Finally, we demonstrate the performance of our algorithms with respect to changes in

the deterioration rate per time period in Table 4.14.
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Table 4.9

Running times (in sec) - High Demand - o = 0.01

CPLEX | Zero | MSetup

P1 0.013 0 0
P2 | 0.034 0 0
P3 | 0.098 0 0.002
P4 | 0.236 0 0.003
P5 1.052 0 0.005
P6 1.594 0 0.008

P7 | 2.809 0 0.013
P8 | 7.794 | 0.002 | 0.020
P9 | 4.661 | 0.002 | 0.028
P10 | 5.894 |0.002 | 0.039
P11 | 168.689 | 0.002 | 0.055
P12 | 26.616 | 0.002 | 0.070
P13 | 160.940 | 0.002 | 0.091
P14 | 260.642 | 0.003 | 0.119

Table 4.10

Error Gaps (in %) - Med Demand - a = 0.01

CPLEX | Zero | MSetup
P1 0 0.082 0
P2 0 0.070 0
P3 0 0.070 0
P4 0 0.073 0
P5 0 0.084 0
P6 0 0.073 0
P7 0 0.087 0
P8 0 0.084 0
P9 0 0.068 0
P10 0 0.063 0
P11 0 0.080 0
P12 0 0.074 0
P13 0 0.083 0
P14 0 0.088 0
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Table 4.11

Error Gaps (in %) - High Demand - o« = 0.01

CPLEX | Zero | MSetup
P1 0 0.039 0
P2 0 0.039 0
P3 0 0.041 0
P4 0 0.040 0
P5 0 0.046 0
P6 0 0.043 0
P7 0 0.048 0
P8 0 0.049 0
P9 0 0.037 0
P10 0 0.036 0
P11 0 0.048 0
P12 0 0.043 0

P13 | 0.00020 | 0.050 | 0.00020

P14 | 0.00003 | 0.051 | 0.00003

Table 4.12

Running times (in sec) - Low Demand - o = 0.01

CPLEX | Zero | MSetup

P15 | 0.016 0 0
P16 | 0.033 0 0
P17 | 0.081 0 0
P18 | 0.125 0 0.002
P19 | 0.556 0 0.005
P20 | 0.745 0 0.008

P21 | 1.542 0 0.013
P22 | 3.053 |0.002 | 0.020
P23 | 3.277 |0.002 | 0.027
P24 | 3.033 |0.002 | 0.040
P25 | 7.878 | 0.000 | 0.055
P26 | 8.698 | 0.002 | 0.072
P27 | 13.470 | 0.002 | 0.094
P28 | 15.570 | 0.003 | 0.119
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Table 4.13

Error Gaps (in %) - Low Demand - o = 0.01

CPLEX | Zero | MSetup
P15 0 0.053 | 0.010
P16 0 0.048 | 0.006
P17 0 0.071 | 0.010
P18 0 0.054 | 0.008
P19 0 0.063 | 0.009
P20 0 0.060 | 0.005
P21 0 0.064 | 0.009
P22 0 0.058 | 0.006
P23 0 0.054 | 0.007
P24 0 0.046 | 0.006
P25 0 0.057 | 0.006
P26 0 0.051 | 0.008
P27 0 0.063 | 0.006
P28 0 0.060 | 0.007
Table 4.14

Running times wr/t changes in « - Low Demand

Optimal Zero MSetup
a=002]|a=003]|a=002|a=003| a=0.02|a=0.03

P1 0.011 0.014 0 0 0 0

P2 0.037 0.027 0 0 0 0

P3 0.088 0.064 0 0 0.0015 0.0016
P4 0.275 0.109 0 0 0.0015 0.0031
P5 1.164 0.583 0 0 0.0047 0.0047
P6 2.172 0.847 0 0 0.0062 0.0095
pP7 3.564 1.778 0.0015 0 0.0125 0.0141
P8 6.294 3.333 0 0 0.0203 0.0203
P9 5.567 2.558 0.0015 0.0016 0.025 0.0297
P10 7.281 3.536 0.0015 0.0016 0.0407 0.0391
P11 | 19.380 8.819 0 0.0016 0.0531 0.0547
P12 || 59.299 9.481 0 0.0015 0.0719 0.0734
P13 | 206.564 | 20.052 0 0.0016 0.0891 0.0938
P14 | 200.850 | 84.878 0.0032 0.0015 0.1188 0.1171
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Our numerical analysis show that the dynamic programming algorithms we propose
perform well under varying demands, deterioration rates, and cargo capacities. They pro-

vide solutions very close to the optimal solution in short running times.

4.5 Special Case: Two Replenishment Modes

In this section, we assume that there are two transportation modes available for inven-
tory replenishment. Let s;, A;, p;, C; represent the fixed setup costs, cargo container costs,
unit replenishment costs and cargo capacities for : = 1,2. We further assume that cargo
capacity of one mode is a multiple of the other. Thus, C5 = nC}. For convenience, we
assume that transportation lead time for both modes is zero (L; = 0) which means that
deterioration is only due to inventory storage. Similar to the single replenishment mode
problem, an optimal solution can contain partial orders. Demand of a single time period
can be satisfied from inventory and replenishments from mode 1 and/or mode 2. Thus, it
requires a significant amount of computation to evaluate all possible combinations for the
LTL and FTL shipments from both mode 1 and mode 2 for the complete time horizon.
In this respect, we present a heuristic procedure to calculate an approximate solution and
compare its performance to the optimal solution obtained by CPLEX. This procedure is
based on solving a shortest path problem on Figure 4.4 where we determine the arc costs,
f(t, 1), as described in the following.

We assume thatt — land 7 — 1 (1 < ¢t < 7 < T + 1) are two consecutive regenera-
tion points. For every (¢, 7) problem, we solve a minimum knapsack problem to find the

combination of cargo containers that would give the minimum cost of replenishment.Let

102

www.manaraa.com



fi = p:C; + A; be the cost of a cargo container for mode . At this stage, we omit the
setup costs, s;. We define variable x; as the number of cargo containers for mode : that is

placed in the knapsack. The knapsack size (D) is determined by the demand from period

T7—1

t through 7. Considering the deterioration rates, D = b, = szt

(by /K1) for some
t <7 <T+1wherel <t <T.The minimum knapsack problem for each (¢, 7) problem

reads as follows:

I
minimize z = » _ fiz; (4.30)
i=1
I
Subjectto > Cyr; > D i=1,2,...,1 4.31)
=1
v € Z°F i=1,2,...,1 (4.32)

The solution to this model will determine the number of cargo containers from each
mode ¢ that should be shipped at the beginning of period ¢ to satisfy the demand through
period 7. Thus, in a solution to this problem a replenishment satisfies the demand of con-
secutive time periods. Also, replenishments are allowed only when there is no inventory
available from the previous time period. Therefore, zero inventory ordering policy is sat-
isfied. This comes at the cost of holding inventory in the remaining time periods of the
regeneration interval. As a remedy to this problem, we adjust the knapsack size if possible
as follows: Let ¢; be the amount replenished in a time period. In an optimal solution, an ¢,
can contain a number of combinations of mode 1 and mode 2. We know that the larger size
mode C5 is a multiple of C and has smaller marginal costs (p; + A;/C;) due to economies
of scale. So whenever, there is a demand in a period that is greater than Cy (b, > C for

any t < <7 — 1), we assume that at least |n;/C | FTL mode 2 containers will be used
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in that period. The rest can be supplied using mode 1 or as a part of another mode 2 re-
plenishment. This remaining part of the demand is added into the knapsack size. Thus,we
redefine D = Z;;tl [(by — |by/C2|C3) [kity] forsome t <7 < T+ 1wherel <t <T.

We solve the knapsack model with a greedy algorithm. Let the residual capacity in the
knapsack at iteration k be Ry. Also let C;(k) = min{C};, Ry }. Atevery iteration, we select
the mode ¢ which minimizes f;/C;(k). For the selected mode ¢, if min{C;, R} = C;, we
increase the value of x; by | R;/C;|. Again, for the selected mode 4, if min{C};, Ry} = Ry,
then we increase x; by 1 (which means that we are at the last iteration). The algorithm
stops when 17, < 0.

At any iteration and for any mode i, if min{C;, Ry} = Ry, it implies that putting this
cargo container into the knapsack will fill the knapsack and terminate the algorithm. We
keep track of the total cost if this cargo were to be placed in the knapsack at that iteration.
This cost may be less than the total cost that will be obtained at the end of the algorithm.
We illustrate this with an example: Let f; = 4,C; = 3 and f;, = 6,5 = 5 where
the knapsack size is D = 9. In the first iteration R, = 9; Ci(1) = min{3,9} = 3;
C5(1) = min{5,9} = 5. Mode 2 is selected as min{4/3,6/5} = 1.2. The residual
capacity after |9/5| = 1 container of mode 2 (x5 = 1) is placed into the knapsack becomes
Ry = 4. The total cost is z = 6. In the second iteration, C1(2) = min{3,4} = 3;
C5(2) = min{5,4} = 4. At this iteration, mode 1 is selected as min{4/3,6/4} = 1.33.
As |4/3] = 1,2, = 1 and z = 6 + 4 = 10. In this iteration, since Cy(2) = Ry = 4, we
calculate the cost if mode 2 was added to the knapsack instead of mode 1: 2 = 6+6 = 12.

In the third iteration, R3 = 1. For both modes i, C;(3) = 1. Mode 1 is selected as
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min{4/1,6/1} = 4. The total cost becomes z = 10 + 4 = 14. As observed, the total cost
would be less (2 = 12) if one more container of mode 2 would be added to the solution.
This simple check provides us an opportunity to lead to a better solution.

After determining the number of cargo containers for each mode ¢, we can calculate
the f(t, 7). Total replenishment amount equals b, .. Number of setups depends on the type

of containers that are selected.

4.5.1 Numerical Study

In this section we compare the running time and the error gap of the minimum knapsack
based algorithm to the optimal solution. For this problem, we generate demand per period
following a uniform distribution U[250, 750]. Holding cost is » = $1/(unit*time period).

Table 4.15 presents the input data for the problems generated.

Table 4.15

Problem Parameters for 2 Mode Problem

Mode 1 Mode 2

s; | U[150,250] | U[250,350]
A; | U[600,700] | U[900, 1100]
p; | U[20,30] U[25,35]
C; 50 200

We generate 27 problems changing the number of time periods (7') and deterioration

rates per time period as shown in Table 4.16. For each of the problems, we take the average
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of 10 randomly generated instances and report on the running times and error gaps using

their averages.

Table 4.16

Problem Characteristics for Two Mode Problem

T

alpha | 10 | 20 | 30
0.00 | P1 | P10 | P19
0.01 | P2 | P11 | P20
0.02 | P3| P12 | P21
0.03 | P4 | P13 | P22
0.04 | PS5 | P14 | P23
0.05 | P6 | P15 | P24
0.06 | P7 | P16 | P25
0.07 | P8 | P17 | P26
0.08 | P9 | P18 | P27

In Table 4.17, the running times of CPLEX to find the optimal solution for each prob-
lem is displayed. We observe that when 7" is large and deterioration rates are small, running
times can be very large. For all of these problems, our knapsack algorithm reported a CPU
time of 0 seconds. The error gaps of the solutions obtained with knapsack algorithm are
shown in Table 4.18. For all of the problem instances, the error gap does not exceed 0.77%.

The results indicate that our algorithm works efficiently providing good quality solutions.

4.6 General Case: Multiple Replenishment Modes

In this section, we consider the general case where there are multiple replenishment

modes. We use two methods to provide solutions for this problem. In the first approach,
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Table 4.17

CPLEX Running Times (in sec) for Two Mode Problem

Prob | Runtime | Prob | Runtime | Prob | Runtime
P1 0.2812 | P10 4.249 P19 | 378.848
P2 0.5718 | P11 | 92.234 | P20 | 291.324
P3 0.2563 | P12 6.428 P21 | 158.797
P4 0.3374 | P13 3.559 P22 | 255.306
P5 0.1923 | P14 3.725 P23 | 225.350
P6 0.1109 | P15 2.095 P24 | 119.983
P7 0.0859 | P16 2.689 P25 | 59.097
P8 0.0703 | P17 2.202 P26 | 48.919
P9 0.1141 | P18 6.142 P27 | 35.206

Table 4.18

Error gap (in %) of the Knapsack algorithm

Prob | Gap | Prob | Gap | Prob | Gap
P1 | 0.606 | P10 | 0.770 | P19 | 0.695
P2 | 0.618 | P11 | 0.751 | P20 | 0.664
P3 | 0.574 | P12 | 0.753 | P21 | 0.629
P4 | 0.604 | P13 | 0.759 | P22 | 0.613
PS5 | 0.616 | P14 | 0.760 | P23 | 0.602
P6 | 0.635 | P15 | 0.742 | P24 | 0.592
P7 | 0.617 | P16 | 0.709 | P25 | 0.575
P8 | 0.628 | P17 | 0.680 | P26 | 0.562
P9 | 0.594 | P18 | 0.678 | P27 | 0.561
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we extend the minimum knapsack formulation which was previously described for two
modes of transportation. In the second approach, we provide a primal-dual algorithm

which provides good quality solutions within a short computation time.

4.6.1 The Minimum Cost Knapsack-Based Algorithm

The knapsack formulation described for two replenishment modes can be adjusted to
consider multiple replenishment modes. We assume that the adjustment in the knapsack
size for (5 in the two mode problem can only be applied to the largest capacity mode
(max Cj, ¢ € I) in this problem setting. It is not cost efficient to assign FTL shipments for
demands that are greater than some C;. Satisfying these demands by using replenishment
modes that have high cargo capacities may be cheaper. In our numerical study, we ana-
lyze the problem where multiple replenishment modes are available at every time period.
We compare the quality of the costs obtained from this approach to the optimal solution

obtained by CPLEX.

4.6.2 A Primal - Dual Algorithm

We have shown in Section 4.2.2 that LP relaxation of our model provides tight lower
bounds. Thus, the solution from solving the LP relaxation of the problem and correspond-
ing dual are close to the optimal solution. This fact encouraged the development of a
primal-dual based heuristic to find close to optimal solutions in this section. For conve-
nience, we consider L; = 0 and deterioration is only due to storage in the inventory.

The dual of problem (P) has a structure that can generate close to optimal lower bounds

for this problem. Primal solutions are then generated using the dual variables. Since we are

108

www.manaraa.com



solving the dual of the LP relaxation of problem (P), the quality of these bounds is no better
than the quality of the solution from the LP relaxation of (P). However, as demonstrated in
our computational analysis, the dual algorithm is much faster than CPLEX. The following

is the formulation of the dual problem (D-P).

T
maximize thvt (4.33)

t=1

T

Subject to Z;k—”wt < s i=1,2,...,;t=12,...,T. (4.34)
Ciby < A; 1=1,2,...,[;t=1,2,...,T. (4.35)
kitTUT — Witr — Qit < Cir 1 = 1, 2, ,I, 1<t<7<T (436)
witr > 0 1=1,2,..., ;1 <t<7<T. (437
0 > 0 i=1,2... [;t=12....T (438)

From (4.35) and (4.38), we have 0 < 0,;; < ’é— Since 6;; are not in the objective func-
tion and appear in (4.36), when maximizing (D-P), these variables will get the maximum
value they can, which is 0;; = % forallt =1,...,T. Removing ;; from this formulation,

we obtain the following formulation (D’-P):

T
maximize Z byvy (4.33)
t=1
Subject to (4.34) — (4.37)
kitTUT — Witr S EitT VI, 1 S t S T S T. (439)
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where, ¢;;,=cyr +A;/C;. In an optimal solution to (D’-P), 0 < wy, and ki, v, — Citr < Wit
Since w;, is not in the objective function, w;;, can be replaced with max (0, k;; v, — Citr ).

This leads to the following formulation of the dual problem (D*-P):

T
maximize Y by, (4.33)
- b t=1
Subject to Zkf max(0, ki — Cur) < 8 Vi; Vit. (4.40)
—t itT

The dual problem (D*-P) has a simple structure that allows the development of a
primal-dual-based algorithm. The dual algorithm obtains near optimal lower bounds by
inspection (see Figure 4.5).

Suppose that the optimal values of the first f-1 dual variables (v], ..., v}_,;) of (D*-P)

are known. Then to be feasible, the f** dual variable (v;) must satisfy the following:

f-1
b b,
ff max(0, ki pvy — Citp) < My g1 = 8; — Z k; max(0, kit vy — Citr)
it —t itT
i = 12 Tit=1..F (4.41)

To maximize the dual problem, we should assign v the largest value satisfying these

constraints. When b; >0, this value is as follows:

G M
vp= min 4 L 4 ZTbSZL (4.42)
i=1,., L4<f | Kty by

A backward algorithm is used to find a primal feasible solution (Figure 4.6).

4.6.2.1 Complementary Slackness Conditions

Suppose that the linear programming relaxation of the formulation (P) has an optimal
solution (¢*, y*, z*) that is integral. Let F = {(i,¢)|yx = 1,z € ZT} and let (v*, w*, 0*)

denote the corresponding optimal dual solution.
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M -—y=s;fori=1... I[,7=1..T.
forr=1to 7 do
if ), =0then v, =0
else v, = min;, { fe4M=ll 0 <t <70 <i< I
fori =1to / do
91‘7 =A/41/C'2
fort =1to 7 do

kit‘r

enddo
enddo
enddo

Mitﬂ' = max {O,Mitﬂ'—l — b= max{o’kitrvr - Eitﬂ'}}

Figure 4.5

Dual Algorithm

Yir =0,0-=0,i=1,..., [;t=1,..,T;t <7 <T
P=A{llb, >0,forl=1,..,T}
Start: T=max[ € P
Step1: for:=1,.... ] do
t=20
repeatt =1+ 1

until M, =0 and ¢;,, — k;;v,+max{0, ki, v, — Gy } =0

yir = 1, and ¢* = 4,t* = ¢, go to Step 2
enddo
go to Step 3
Step 2: for 7 = t* to 1" do
i£Cpeper — kpepervr + maX{O, KisperUp — Ei*t*r} =0
then g;- - b P=P— {1}

T Togerer
enddo
Step 3: if P # O then go to Start
else

for:=1,....,1do
fort=1,...,7T do

Zit = [ZZ:t qitT/Ci-I

enddo
enddo
Figure 4.6
Primal Algorithm
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T

bs .
yft[si—zk—w;‘”] =0 i=1,...,I;t=1,...,T (4.43)
—t it
G lCitr — kirvE +wl, +05) = 0 i=1,... Lt=1,...,Tt<7<T444)
A —-C05 = 0 i=1,... ;t=1,...,T (4.45)
*k E b’T’ * .
witT[qitT—k—yit] =0 i=1,....L;t=1,...,T,t <17 <T(4.46)
itT
I T
Vibr =Y hueqh,] = 0 1<t<r<T (4.47)
=1 t=0
T
03(Cizh =Y i) = 0 i=1... Lit=1..T (4.48)
T=t

4.6.2.1.1 Proposition 4.2

The solutions obtained by the primal and dual algorithms are feasible, and satisfy
complementary slackness conditions (4.43), (4.44), (4.45), and (4.47).

The solutions generated by the primal and dual algorithm are feasible by construction.
The dual algorithm ensures that equations (4.41) are satisfied. The dual solutions are such

that

kit(rjl)witﬁﬂ < M;,. Therefore, if M;, = 0, then w; 41 = 0. Consequently
Mitri1 = Mit710= ... = Myr = 0 and wi; 711 = Witr12 = ... = wyr = 0. The primal
algorithm sets y;; = 1 only when M, = 0, what implies that conditions (4.43) will always
be satisfied.
The algorithm sets ¢, > 0 only when ¢, — ki, vF + wj,, = 0 where ¢, = cjtr + ‘é—7
That means conditions (4.44) will be satisfied. A solution generated by the dual algorithm
A

will satisfy conditions (4.45) since the algorithm sets 67, = .
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The primal algorithm sets ¢;;, = kb: when ¢, — kv, + max{0, kv, — Gy } = 0.

This condition is equal to zero when v, > 0 (assuming ¢;;, > 0). Therefore, conditions

(4.47) are satisfied.

br *
= When wj;,

The algorithm sets ¢}, =

= (. The algorithm assumes that demand in a
period is satisfied by a single replenishment mode. However, based on Jaruphongsa et al.
[59] in an optimal solution to our problem demand in a time period can be satisfied by
more than one replenishment mode. Such a solution would not satisfy conditions (4.46).
The algorithm will not always satisfy conditions (4.48) since the primal algorithm sets
o = FT:TQW and 6}, = 4 > 0. That implies, conditions (4.48) will be satisfied only

in the case that the optimal solution consists of full truck shipments. The running time of

the primal-dual algorithm is O(IT?).

4.6.3 Numerical Study

In this section, we solve a multiple replenishment mode problem with CPLEX for an
optimal solution. We compare the performances of our minimum knapsack based algo-
rithm and primal dual algorithm with respect to the running times and error gaps. We
generate demand per period following a uniform distribution U[500, 1000]. Holding cost
is h = $1/(unit*time period). We assume that there are three types of transportation modes
with the costs presented in Table 4.19.

We generate 12 problems by changing the number of time periods (7") and the number

of replenishment modes (/). We assume equal number of different transportation modes
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Table 4.19

Problem Parameters for Multiple Mode Problem

Mode 1 Mode 2 Mode 3
s; | U[150,250] | U[250,350] | U[200,300]
A; | U[600,700] | U[900, 1100] | U[750, 850]
pi | U[20,30] U[25,35] U[23,33]
C; 50 200 150

for every /. For example, an / = 3 uses one of each type of transportation modes, whereas
I = 15 uses five of each. For each problem, we report on 10 randomly generated instances.

Table 4.20 shows the characteristics of the problems generated.

Table 4.20

Problem Characteristics for Multiple Mode Problem

Prob | I | T ||Prob || T || Prob| I | T
1 315 5 6|5 9 15| 5
2 3110 6 610 10 [15| 10
3 3115 7 6|15 11 | 15|15
4 3120 8 61201 12 | 15|20

Table 4.21 and Table 4.22 show the running times and error gaps of the algorithms
respectively. The first column in Table 4.21 shows the running time of CPLEX for an
optimal solution. Both primal-dual and the knapsack algorithms run in 0 sec CPU time.
The error gaps for the primal dual algorithm do not exceed 1.5%. The knapsack algorithm
works less efficiently than the primal-dual algorithm. As the problem size increases, the

error gap climbs up to 6.5%.
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Table 4.21

Running Times (in sec) for Multiple Mode Problem

Problem | Optimal | Knapsack | Prim-Dual
1 0.053 0 0
2 1.027 0 0
3 0.900 0.0015 0
4 17.567 0 0
5 0.083 0 0
6 1.063 0.0016 0
7 18.572 0 0
8 80.836 0 0
9 0.169 0.0015 0
10 3.569 0 0
11 16.463 0 0
12 177.372 0 0

Table 4.22

Error gap (in %) of Algorithms

Problem | Knapsack | Dual | Primal
1 0.823 0.463 | 1.369
2 0.959 0.328 | 1.147
3 0.929 0.396 | 1.369
4 0.745 0.351 | 1.228
5 2.344 0.521 | 1.397
6 2.527 0.383 | 1.221
7 2.682 0.379 | 1.335
8 2.883 0.354 | 1.458
9 7.282 0.467 | 1.343
10 6.375 0.387 | 1.118
11 6.576 0.367 | 1.309
12 6.744 0.370 | 1.254
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4.7 Conclusions

In this chapter, we analyze an extension of the EL.S model that considers replenishment
of age-dependent perishable products via multiple replenishment modes. We assume a
multiple setups cost structure for replenishment costs. We analyze the performance of
our formulation by comparing it to another formulation with a different network structure
proposed in the literature. We show that LP relaxation of our formulation provides higher
lower bounds. We analyze the properties of an optimal solution. We consider two special
cases which allow use of a single and two replenishment modes respectively. For the
single replenishment mode problem, we first propose a dynamic programming algorithm
which works under a zero inventory ordering policy. Secondly, we propose a dynamic
programming algorithm that takes multiple setups cost structure into consideration. For
the two replenishment mode problem, we present a minimum knapsack based algorithm.
For both special cases, we show that our algorithms provide good quality solutions within
a short running times. For the general problem with multiple replenishment modes, we
extend the minimum knapsack based algorithm and also present a primal dual algorithm.
We show that both algorithms outperform the CPLEX running time. The quality of the
solutions obtained by the primal dual algorithm are better than the minimum knapsack

based algorithm.
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CHAPTER 5
BI-OBJECTIVE MODELS FOR GREEN SUPPLY CHAIN MANAGEMENT OF

PERISHABLE PRODUCTS

5.1 Introduction

In this chapter we extend our mathematical models for the replenishment decisions of
deteriorating products to include multiple objectives of minimizing costs and carbon emis-
sions. Inventory decisions are impacted by tradeoffs that exist between replenishment and
inventory holding costs, and also by the lead time and and remaining shelf life of perishable
products. Using refrigerated trucks and storage areas can increase the remaining shelf life
of a perishable product. These activities increase energy consumption and consequently
carbon emissions. We live in an environment with an increased public concern about the
effects of carbon emissions on the quality of our lives. Many countries and governments
have accepted that there is an urgent need to put policies into action that set reduction
targets for total emissions. For example, through its European Climate Change Program,
the European Union aims to reduce its carbon emissions by at least 20% by 2020 as com-
pared to 1990 levels [34]. As a consequence, many companies are required to take actions
by revising their operations and updating their technologies. Other companies are readily
committed to going green since green initiatives not only benefit the environment, but also

increase customer goodwill and loyalty and guarantee sustainable operations. Thus, the
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companies are faced with replenishment decisions which are not easy to make. The goal of
this chapter is to provide tools that can be used by companies in order to make cost efficient
and environmentally conscious inventory replenishment decisions for perishable products.
The objective of our models is to minimize a combination of costs and the environmental
impacts associated with replenishment-related decisions.

The model we propose is a multi-objective, mixed-integer linear programming model
which minimizes costs and environmental impacts due to supply chain activities including
transportation and inventory. The cost objective of this model minimizes the total inven-
tory replenishment costs which consist of transportation, inventory, purchase and fixed or-
der costs. The environmental objective minimizes greenhouse gas (GHG) emissions due to
transportation and inventory. In addition to the tradeoffs mentioned before, this model also
captures the tradeoffs that exist between costs and emissions in the supply chain. For ex-
ample, using refrigerated trucks and refrigerated storage areas for dairy products increases
products’ shelf life. Longer product shelf life reduces the fixed inventory replenishment
costs since less frequent replenishments are necessary. On one side, using refrigerated
trucks and storage areas increases energy consumption and, as a consequence, GHG emis-
sions. Reducing the number of replenishments saves transportation-related energy.

We propose two solution approaches for the multi-objective models. These solution
approaches include (a) weighted sum method, and (b) e- constraint method. The methods
also help the reader gain insights about the carbon regulatory mechanisms of carbon tax
and carbon cap respectively. Using numerical analysis, we make important observations

with respect to the tradeoffs that exist between costs and emissions and identify the mech-
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anism that has the greatest impact on GHG emission reductions on the supply chain. En-
vironmentally conscious companies can use these models and the corresponding solution
algorithms as sub-modules within their MRP systems to account for requirements planning

when multiple modes, perishable products, and multi-supplier replenishment options exist.

5.2 Multi Objective Model Formulation

In this section, we formulate a multi-objective model to replenish perishable products
with multiple transportation modes with the aim of minimizing the total costs and environ-
mental impacts. We use the same variables and parameters as described in Section 4.2.1).
Defining c;t; = p; + ZT ) skits, the total cost (TC) objective of our problem reads as

follows:

I T
T q Y,z Z Z Z CitrQitr + Silit + A Zzt] (51)

i=1 t=1 7=

The environmental objective minimizes emissions due to inventory and transportation.
In this study we consider only C'O, emissions since this accounts for about 90% of the total
GHG emissions. Carbon emissions due to loading and unloading of one cargo container
are considered fixed, and denoted by flit. Variable emissions, denoted by ¢;;, are due
to transportation. Both types of emissions depend on the transportation mode used and
the price of fuel in period ¢. Variable emissions also depend on the distance traveled.
Emissions due to holding one unit of inventory in period ¢ are denoted by hs. We define
Citr = Cit + Z;tl fzs ki:s. The following is the total emissions (TE)objective of our problem.

I T T
E(q,2) = Z Z[Z CitrQitr + Aitzit] (5.2)

i=1 t=1 7=t
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The following is a multi-objective, mixed integer linear programming (MILP) formu-

lation for this inventory replenishment problem.

minimize , . (TC(q,y,2), TE(q, 2)) (5.3)
I T
Subjectto > > kissqur = br 1<7<T (5.4)
i=1 t=1
b, ,
qitT_k_yit < 0 7':17277-[;1§t§T§T (55)
it T

IA
@)
.
I
—_
no

T
ZQit‘r_Cizit o ht=1,2...,T (5.6)
T=t

ye € {01} i=1,2... ;t=12....,T (57)

2 € Z7T i=1,2,...,:t=1,2,...,T (5.8)

v
e}
I
\'I—‘
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~
—_
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A
=
A
~

Qitr 5.9

5.3 Solution Approaches

MOP models are used when optimal decisions need to be taken in the presence of
tradeoffs between two or more conflicting objectives. Typically, there does not exist a
single solution that simultaneously optimizes each objective. Thus, solving an MOP deals
with approximating or computing all or a representative set of Pareto optimal solutions.
We describe two approaches to calculate the Pareto set of solutions for this bi-objective
optimization problem which are the weighted sum and e-constraint methods.

The weighted sum method is a traditional, popular method which transforms a bi-
objective problem into a series of single-objective problems. This method generates a num-
ber of single-objective problems by changing the weights assigned to each objective func-
tion. The solutions to these problems approximate the Pareto frontier for the bi-objective
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problem [111]. The e-constraint method minimizes one individual objective function with
an upper level constraint imposed on the other objective function [68]. The Pareto frontier
is approximated by solving this single-objective problem for different values of the upper

bound imposed on the other objective function.

5.3.1 Weighted sum method

The weighted sum method minimizes a weighted sum of the two objectives A\ T'C' +
AT E. Typically, the values of A\, and A, are selected such that A\; +X; = 1 and A, Ay > 0.
The Pareto frontier is then created by solving the single-objective problem for different
values of A\; and As.

The following is the objective function of the single-optimization problem under the

weighted sum approach.

I T T T
Z(q,y,2) = Z Z (AI[Z Citr Qitr + SiVit + Aizit] + Ao [Z CitrQitr + Az’t%‘t]) (5.10)

i=1 t=1 =t T=t

In this study, the sum of A\; and )\, is not equal to 1. We set the value of \; = 1
and change the value of \;. One can think of the values of A\, as the cost of per unit
of CO, emissions. In this case, the objective function calculates the total costs due to
replenishment and emissions in the supply chain. This approach helps us test for changes
in the total costs by increasing in the relative importance of Ay to A\;. Ay could as well
be considered as the tax a facility would pay per unit of emission under a carbon tax

mechanism. Carbon regulatory mechanisms, such as carbon cap, carbon tax, carbon cap-

and-trade, and carbon offset do not exist at the federal level. However, a few actions have
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already been enacted. For example, policies articulated by executive order in California set

statewide GHG emission reduction targets for 2010, 2020, and 2050.

5.3.2 e-constraint method
The e-constraint method approximates the set of Pareto solutions by solving a series of
instances of the following single-objective problem (R) for different values of the parame-

ter e.

min TC(q,y, 2) (5.1)
Subject to (4.5) to (4.10)
TE(q z) <e (5.11)

e<e<E (5.12)

Model (R) identifies an inventory replenishment schedule which minimizes total costs,
subject to, carbon emission constraints. One can think of € as an emission cap imposed on
the facility under the scenario that a carbon cap policy is used.

The lower and upper limits within which the e parameter must fall in are obtained from

the optimization of each separate objective function as follows:

min TE(q, z) (5.2)

Subject to (4.5) to (4.10)
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Let (¢, ¥, z), be the solution to this problem. Then, ¢ = T'E(q, z) represents the min-
imum level of carbon emissions required to meet demand, without any considerations of

Costs.

min TC(q,y, 2) (5.1)

Subject to (4.5) to (4.10)

Let (¢, 7,Z), be a solution to this problem. Then, € = T'E(q, Z) represents the emission

levels for the cost-optimal solution to the problem.

5.4 Results

This section summarizes the results of the computational experiments performed. We
solved our model using the ILOG/CPLEX commercial solver. We consider the following
example. Suppose that a retailer replenishes its inventories for a perishable product using
3 suppliers. Supplier 1 is a local supplier who uses a less-than-truckload (LTL) service
provider. Delivery lead time for shipments from this supplier is 1 day since the LTL service
provider, in order to minimize its costs, serves a number of customers in each route. The
lead time from supplier 2 is 2 days. This supplier is a wholesaler who provides the product
at a discount price. This supplier sends shipments using dedicated, non-refrigerated trucks.
The third supplier is also a wholesaler who uses dedicated, refrigerated trucks for delivery.
The delivery time for this supplier is 3 days. We assume that products do not perish during
delivery time if shipped by refrigerated trucks. Replenishment costs from this supplier
are higher than supplier 2 due to using a refrigerated truck, but smaller than the local

supplier. Order set-up and processing costs are the same for each supplier. Cargo container
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costs, which represent loading and unloading costs, are zero for the LTL service provider
since he simply charges a fixed dollar amount per ton of product shipped. The dedicated
trucks have a fixed capacity of 25 tons. Unit emissions are higher for shipments that use
refrigerated trucks since additional energy is consumed for refrigeration. We consider a
time horizon 7" = 10 days, and a time period equal to 1 day. We assume that inventory
holding costs equal $1/(ton*day) and inventory holding emissions are 0.5 kg/(ton*day).
Inventory holding emissions are due to using air conditioning in the storage area. Table 5.1
summarizes the input data.

We test the performance of this retailer considering different daily demands which
vary from low demand levels (b; ~ [2, 4] tons), to medium (b; ~ [4, 6] tons) and high (b,
~ [14,16] tons). The daily deterioration rates vary from 0 to 19%. Since deterioration
increases with a product’s age, we consider the increment to be constant at 1% daily. De-

terioration rate during refrigeration is assumed zero.

Table 5.1

Problem Parameters

Supplier Si Az Pi Cz Az ﬁz Lz
1 50 0 15 30 1 1
2 50 U[45,55] 10 25 50 1 2
3 50 U[45,55] 12 25 50 15 3

In order to generate the results presented in Figure 5.1 to Figure 5.3 we used the e-

constraint method and set the value of € equal to 325 kg. This is the same as solving
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the problem by considering the cost objective only. The purpose of these experiments is
to observe the impact of perishability on replenishment decisions. Each point in a graph
represents the average results from solving 10 different randomly generated problem in-
stances.

Figure 5.1 presents the relationship between supplier selection decisions and the prod-
uct’s deterioration rate for different levels of customer demand. We make two major ob-
servations from these graphs. First, as demand increases, the volume shipped from a local
supplier decreases. This finding makes sense since high demand levels justify the use of
full truckloads. Therefore, the retailer makes use of wholesalers who provide discounted
prices. Second, as the deterioration rate increases, the volume shipped using refrigerated
trucks increases (supplier 3). When daily deterioration rate is 8% or higher, supplier 2
is not used, despite the fact that supplier 2 provides a smaller unit replenishment cost as
compared to supplier 3. This is because the lead time from this supplier is 2 days, and
therefore, the remaining shelf life for the product delivered decreases dramatically.

Figure 5.2 helps understand the relationship that exists between deterioration rate and
(a) replenishment and inventory holding costs (ZM’T CitrQit+); (b) order costs (Zi’t SiYit);
and (c) cargo costs (Zi,t A;zy) for different levels of demand. As the deterioration rate in-
creases, replenishment costs increase due to the fact that the volume shipped using supplier
2 (refrigerated trucks) increases. This supplier is relatively more expensive. As the deterio-
ration rate increases the shelf life of products decreases, and therefore, the retailer chooses
orders of smaller size. To satisfy demand, orders are initiated more frequently resulting in

higher order costs. Similarly, as the deterioration rate increases, the facility moves away
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Transportation Mode Selection
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from using the local supplier who sends LTL shipments that do not incur cargo container
costs. As a consequence, cargo costs increase with the deterioration rate. The increase in
costs (due to increasing deterioration rate) becomes greater as the demand for the product

increases.

Low Demand —e— ' ' ol
Medium Demand "
High Demand ---%--- -

26 | o

24 | e

22 | //

Total Unit Cost (in $/ton)

20 —/ _

Deterioration Rate (%/day)
Figure 5.3

Total Unit Costs

Figure 5.3 presents the total unit cost versus deterioration rates for low, medium and
high demand. We make two observations here. First, as demand increases, the total unit
cost decreases. This decrease is due to the economies of scale achieved from using full
truckload shipments. Second, as the deterioration rate increases, the total unit cost in-
creases. As deterioration costs increase (see Figure 5.2), the volume shipped from supplier
3 increases. The increase in costs is due to the higher replenishment costs of supplier 3.

Figure 5.4 displays the set of Pareto solutions (costs versus emissions) for the bi-

objective optimization problem. The three Pareto frontiers presented are generated for
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Emissions versus Costs

low, medium and high deterioration rates. We make the following observations from the
graphs. First, as the deterioration rate increases, both costs and emissions required to sat-
isfy demand increase. The increase in costs is due to using refrigerated trucks and due to
increasing the number of orders required because of the limited shelf life of these products.
The increase in emissions is due to increasing the volume shipped by refrigerated trucks.
Second, decreasing emissions in this two-stage supply chain comes at a cost. For example,
when the deterioration rate is 4% and € = 260kg, a decrease in emissions from 260 to 225
increases costs from $960 to $993. In other words, a 13.5% improvement in emissions
comes at a 3.3% increase in costs. For this particular problem, experimental results indi-
cate that great reductions in emissions can be achieved in a supply chain with minimum

impact on costs.
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Total Emissions versus Ao

We use the weighted sum method to generate Figure 5.5 which presents emissions
versus A, for different deterioration rates. The amount of C'Oy emitted decreases as the
value of ), increases. This is understandable since, when the model is solved using the
weighted sum method, each unit of C'O, emitted is penalized by an amount )\,. Total
emissions also increase with deterioration rate due to the increase in the volume shipped
by refrigerated trucks.

In our problem setting, we have considered different lead times (1 to 3 days long) for
each supplier. In order to observe the effects of lead time on costs and emissions, we re-ran
the experiments for different values of lead time. To simplify the experiments and observe
the impact of lead time only on costs and emissions, we assume that each supplier has ex-
actly the same lead time. Figure 5.6 and Figure 5.7 summarize the results. As deterioration

rate and lead time increase, both costs and emissions in this supply chain initially increase.
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After some point, the lines remain flat and do not change with lead time. Recall that prod-
ucts shipped using refrigerated trucks do not deteriorate during delivery. Therefore, the
breakpoint where the lines become flat corresponds to using only refrigerated trucks for
inventory replenishment.

This breakpoint of lead times decreases as the deterioration rate increases. For example,
a rate of 4% requires 4 days of lead time for the costs to remain constant whereas 15% can
only afford 1 day of lead time. Figure 5.7 shows the level of emissions for increasing lead
times. Emissions keep increasing up to the breakpoint in lead times and stay constant with

the usage of refrigerated trucks.

5.5 Conclusions

This paper proposes a bi-objective mathematical model that aids inventory replenish-
ment decisions for perishable products, such as agricultural and dairy products, human
blood, photographic film, etc. This is a mixed-integer linear programming model which
minimizes costs and environmental impacts due to supply chain activities such as trans-
portation and inventory. The cost objective of this model minimizes the total inventory re-
plenishment costs, including transportation, inventory, purchase and fixed order costs. The
environmental objective minimizes greenhouse gas (GHG) emissions due to transportation
and inventory.

We propose two solution procedures to solve this problem, a weighted sum method and
a e-constraint method. The weighted sum method minimizes a series of single-objective

problems. The objective function represents the total supply chain costs as well as penalties
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due to CO, emissions necessary to maintain supply chain operations. The e-constraint
method minimizes one individual objective function with an upper level constraint imposed
on the other objective function. The Pareto frontier is approximated by solving this single
objective problem for different values of the upper bound imposed on the other objective
function. The single-objective problems are solved using CPLEX.

We ran a number of experiments in order to observe the relationships that exist between
costs and emissions in the supply chain. The following are some important observations we
made. (a) An increasing deterioration rate impacts supplier selection decisions in the sup-
ply chain. Suppliers that have shorter lead times are preferred since shorter lead times for
perishable products imply longer shelf life. (b) An increasing deterioration rate increases
inventory replenishment costs since often suppliers that have shorter lead times (such as
local suppliers) do not necessarily provide the least expensive products. (c) As the deteri-
oration rate increases and shelf life of a product decreases, inventories are replenished in
smaller quantities. This increases the frequency of shipments and consequently, the fixed
order replenishment costs. (d) An increasing deterioration rate increases emissions due
to using refrigerated trucks, and increasing the frequency of shipments. (e) Decreasing
emissions in the supply chain comes at a cost. There are a number of operational changes
(such as supplier selection, or transportation mode selection) which result in great emission

reductions and result in relatively small increases in costs.
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CHAPTER 6

CONCLUDING REMARKS

This dissertation studies extensions of ELS models to consider multiple objectives of
cost and emission minimization for contemporary supply chain problems. It also provides
applications of the models proposed in biomass and perishable product supply chains.
These products have special characteristics due to their nature. Thus, replenishment de-
cisions are subject to a variety of tradeoffs between costs and emissions.

In particular a facility with access to multiple replenishment modes is considered. The
objective is to satisfy the demand of the facility over the time horizon using a set of these
replenishment modes such that the total costs and total emissions of the supply chain are
minimized. Chapter 3 provides an extension of the ELS model with fixed charge replen-
ishment costs and multiple replenishment modes. Carbon costs and emissions are then
integrated into this model to gain insights about potential carbon regulatory mechanisms.
Through numerical analysis on a biomass supply chain, the study provides a better under-
standing of the tradeoffs between costs and emissions and how the replenishment decisions
are impacted by carbon mechanisms.

Chapters 4 and 5 discuss models for perishable products. Chapter 4 provides the ELS

model with perishable products with multiple setups cost structure which gives a more
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realistic representation of replenishment costs. This section only considers the cost mini-
mization objective. The properties of an optimal solution are presented followed by algo-
rithms to solve cases where one, two or multiple replenishment modes are available. For
a single mode of replenishment, two dynamic programming algorithms are presented: (1)
assuming zero inventory ordering policy, and (2) considering multiple setups cost structure.
For two modes of replenishment, a minimum knapsack based algorithm is proposed. For
multiple modes of replenishment, an extension of the minimum knapsack based algorithm
is presented in addition to a primal dual algorithm for this problem. It is shown that these
algorithms work in short running times and provide good quality solutions.

Chapter 5 extends the model with multiple setups cost structure and perishable products
to consider multiple objectives of cost and emission minimization. Two solution methods
are proposed which are e-constraint and weighted sum methods. These methods provide
insights about carbon cap and carbon tax mechanisms respectively.

Overall, this research provides models to satisfy the demand of a facility for a single
type of product using multiple replenishment modes in order to minimize costs and emis-
sions. Variations include two different replenishment cost structures (fixed and multiple-
setups) and product types (non-perishable and age-dependent perishable products). A pos-
sible extension to this research is considering perishable products with fixed shelf lives.
These type of products do not lose their value depending on their age; however, they have
to be discarded at their expiration dates. Examples include pharmaceuticals and packaged
and canned foods. Thus, this extension can potentially find an application area in the sus-

tainable healthcare supply chains and/or food supply chains.
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Another extension can consider the joint replenishment of different products types us-
ing same replenishment modes. In this case, replenishment decisions should address ad-
ditional tradeoffs that exist between replenishment costs, required delivery time and shelf
life of multiple products and lead time of each replenishment mode. Consolidating differ-
ent products may lead to fewer replenishments but may increase total inventory holding
costs. Depending on the perishability of the products, replenishments can require refriger-
ation which increases total emissions. Thus, this problem requires an extended analysis to

understand the impact of joint replenishment decisions on the total costs and emissions.
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